• Chinese Journal of Lasers
  • Vol. 46, Issue 12, 1207002 (2019)
Cong Li, Kehong Wang*, and Jun Huang*
Author Affiliations
  • School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
  • show less
    DOI: 10.3788/CJL201946.1207002 Cite this Article Set citation alerts
    Cong Li, Kehong Wang, Jun Huang. Effects of Indocyanine Green and Methylene Blue on Tensile Strength and Thermal Damage of Laser Biological Tissue Soldering[J]. Chinese Journal of Lasers, 2019, 46(12): 1207002 Copy Citation Text show less
    References

    [1] Gabay I, Barequet I, Varssano D et al. Bonding surgical incisions using a temperature-controlled laser system based on a single infrared fiber[J]. Journal of Biomedical Optics, 18, 111416(2013). http://europepmc.org/abstract/med/24057125

    [2] Park S, Kang H W. Multivariate analysis of laser-induced tissue ablation: ex vivo liver testing[J]. Applied Sciences, 7, 974(2017).

    [3] Sriramoju V, Alfano R R. In vivo studies of ultrafast near-infrared laser tissue bonding and wound healing[J]. Journal of Biomedical Optics, 20, 108001(2015).

    [4] He W P, Frueh J, Hu N et al. Guidable thermophoretic Janus micromotors containing gold nanocolorifiers for infrared laser assisted tissue welding[J]. Advanced Science, 3, 1600206(2016). http://europepmc.org/articles/PMC5157175

    [5] Sajjadi A Y, Mitra K, Grace M. Expression of heat shock proteins 70 and 47 in tissues following short-pulse laser irradiation: assessment of thermal damage and healing[J]. Medical Engineering & Physics, 35, 1406-1414(2013). http://europepmc.org/abstract/med/23587755

    [6] Lim H S. Reduction of thermal damage in photodynamic therapy by laser irradiation techniques[J]. Journal of Biomedical Optics, 17, 128001(2012). http://www.ncbi.nlm.nih.gov/pubmed/23224063

    [7] Liljemalm R, Nyberg T. Quantification of a thermal damage threshold for astrocytes using infrared laser generated heat gradients[J]. Annals of Biomedical Engineering, 42, 822-832(2014).

    [8] Tuncer I, Ozçakir-Tomruk C, Sencift K et al. Comparison of conventional surgery and CO2 laser on intraoral soft tissue pathologies and evaluation of the collateral thermal damage[J]. Photomedicine and Laser Surgery, 28, 75-79(2010).

    [9] Khosroshahi M E, Nourbakhsh M S. Enhanced laser tissue soldering using indocyanine green chromophore and gold nanoshells combination[J]. Journal of Biomedical Optics, 16, 088002(2011). http://www.ncbi.nlm.nih.gov/pubmed/21895342

    [10] Guan K W, Jiang Y Q, Sun C S et al. A two-layer model of laser interaction with skin: a photothermal effect analysis[J]. Optics & Laser Technology, 43, 425-429(2011). http://www.sciencedirect.com/science/article/pii/S0030399209002679

    [11] Tabakoglu H O, Topaloglu N, Gulsoy M. The effect of irradiance level in 980-nm diode laser skin welding[J]. Photomedicine and Laser Surgery, 28, 453-458(2010). http://www.ncbi.nlm.nih.gov/pubmed/19764900

    [12] Liu Q M, Huang J, Wang K H et al. Multivariate nonlinear regression model of laser fusion in vitro skin tissue incision performance based on response surface methodology[J]. Chinese Journal of Lasers, 45, 0807002(2018).

    [13] Huang J, Li C, Wang K H et al. Laser welding characteristics of biological tissues in vitro[J]. Chinese Journal of Lasers, 44, 0407001(2017).

    [14] Fried N M, Walsh J T. Laser skin welding: in vivo tensile strength and wound healing results[J]. Lasers in Surgery and Medicine, 27, 55-65(2000). http://www.ncbi.nlm.nih.gov/pubmed/10918294

    Cong Li, Kehong Wang, Jun Huang. Effects of Indocyanine Green and Methylene Blue on Tensile Strength and Thermal Damage of Laser Biological Tissue Soldering[J]. Chinese Journal of Lasers, 2019, 46(12): 1207002
    Download Citation