• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111424 (2020)
Ying Chen, Jie Wang, Tao Gao, Weilin Zhu, Xiangfeng Wang, and Feng Huang*
Author Affiliations
  • School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian 350108, China
  • show less
    DOI: 10.3788/LOP57.111424 Cite this Article Set citation alerts
    Ying Chen, Jie Wang, Tao Gao, Weilin Zhu, Xiangfeng Wang, Feng Huang. Fabrication of Large-Scale Free-Standing Terahertz Wire Grid Polarizer by Femtosecond Laser Micro-Machining[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111424 Copy Citation Text show less
    References

    [1] Hecht E. Optics[M]. 3rd ed. New York: Addison-Wesley Longman, 327-328(1998).

    [2] Yu X J, Kwok H S. Optical wire-grid polarizers at oblique angles of incidence[J]. Journal of Applied Physics, 93, 4407-4412(2003).

    [3] Mansuripur M. The Ewald: oseen extinction theorem[J]. Optics and Photonics News, 9, 50-55(1998).

    [4] Hsieh C F, Lai Y C, Pan R P et al. Polarizing terahertz waves with nematic liquid crystals[J]. Optics Letters, 33, 1174-1176(2008).

    [5] Ho I C, Pan C L, Hsieh C F et al. Liquid-crystal-based terahertz tunable Solc filter[J]. Optics Letters, 33, 1401-1403(2008).

    [6] Wojdyla A, Gallot G. Brewster's angle silicon wafer terahertz linear polarizer[J]. Optics Express, 19, 14099-14107(2011).

    [7] Costley A E, Hursey K H, Neill G F et al. Free-standing fine-wire grids: their manufacture, performance, and use at millimeter and submillimeter wavelengths[J]. Journal of the Optical Society of America, 67, 979-981(1977).

    [8] Mao H Y, Xia L P, Rao X H et al. A terahertz polarizer based on multilayer metal grating filled in polyimide film[J]. IEEE Photonics Journal, 8, 1-6(2016).

    [9] Ferraro A, Zografopoulos D C, Missori M et al. Flexible terahertz wire grid polarizer with high extinction ratio and low loss[J]. Optics Letters, 41, 2009-2012(2016).

    [10] Deng L Y, Teng J H, Zhang L et al. Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure[J]. Applied Physics Letters, 101, 011101(2012).

    [11] Yamada I, Takano K, Hangyo M et al. Terahertz wire-grid polarizers with micrometer-pitch Al gratings[J]. Optics Letters, 34, 274-276(2009).

    [12] Ren L, Pint C L, Booshehri L G et al. Carbon nanotube terahertz polarizer[J]. Nano Letters, 9, 2610-2613(2009).

    [13] Ren L, Pint C L, Arikawa T et al. Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks[J]. Nano Letters, 12, 787-790(2012).

    [14] Zubair A, Tsentalovich D E, Young C C et al. Carbon nanotube fiber terahertz polarizer[J]. Applied Physics Letters, 108, 141107(2016).

    [15] Kyoung J, Jang E Y, Lima M D et al. A reel-wound carbon nanotube polarizer for terahertz frequencies[J]. Nano Letters, 11, 4227-4231(2011).

    [16] Dai L L, Zhang Y P, Guo X H et al. Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals[J]. Optical Materials Express, 8, 3238-3249(2018).

    [17] Dai L L, Zhang Y P, Zhang H Y et al. Broadband tunable terahertz cross-polarization converter based on Dirac semimetals[J]. Applied Physics Express, 12, 075003(2019).

    [18] Dai L L, Zhang Y P. O’Hara J F, et al. Controllable broadband asymmetric transmission of terahertz wave based on Dirac semimetals[J]. Optics Express, 27, 35784-35796(2019).

    [19] Tian Y S, Guo X H, Dai L L et al. Broadband tunable terahertz polarizers based on Dirac semimetal[J]. Chinese Journal of Lasers, 46, 0614033(2019).

    [20] Yuan Y H, Chen X Y, Hu F R et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure[J]. Chinese Journal of Lasers, 46, 0614016(2019).

    [21] Li Y H, Zhou L, Zhao G Z. Terahertz broadband polarization converter based on anisotropic metasurface[J]. Chinese Journal of Lasers, 45, 0314001(2018).

    [22] Lin Y Z, Yao H Z, Ju X W et al. Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining[J]. Optics Express, 25, 25125-25134(2017).

    [23] Lee J, Seo M, Park D et al. Shape resonance omni-directional terahertz filters with near-unity transmittance[J]. Optics Express, 14, 1253-1259(2006).

    [24] Ward D W, Beers J D, Feurer T et al. Coherent control of phonon-polaritons in a terahertz resonator fabricated with femtosecond laser machining[J]. Optics Letters, 29, 2671-2673(2004).

    [25] Komlenok M S, Volodkin B O, Knyazev B A et al. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation[J]. Quantum Electronics, 45, 933-936(2015).

    [26] Kiriakidis G, Katsarakis N. Fabrication of 2-D and 3-D photonic band-gap crystals in the GHz and THz regions[J]. Materials Physics and Mechanics, 1, 20-26(2000).

    [27] Ward D W, Statz E R, Nelson K A. Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining[J]. Applied Physics A, 86, 49-54(2006).

    [28] Mary A, Rodrigo S G, Martín-Moreno L et al. Theory of light transmission through an array of rectangular holes[J]. Physical Review B, 76, 195414(2007).

    [29] Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W et al. Light passing through subwavelength apertures[J]. Reviews of Modern Physics, 82, 729-787(2010).

    Ying Chen, Jie Wang, Tao Gao, Weilin Zhu, Xiangfeng Wang, Feng Huang. Fabrication of Large-Scale Free-Standing Terahertz Wire Grid Polarizer by Femtosecond Laser Micro-Machining[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111424
    Download Citation