• Opto-Electronic Science
  • Vol. 2, Issue 7, 230014-1 (2023)
Alexey Porfirev1,*, Svetlana Khonina1, Andrey Ustinov1, Nikolay Ivliev1, and Ilya Golub2
Author Affiliations
  • 1Image Processing Systems Institute of RAS—Branch of the FSRC "Crystallography and Photonics" RAS, Samara 443001, Russia
  • 2School of Advanced Technology, Algonquin College, Ottawa, Ontario K2G 1V8, Canada
  • show less
    DOI: 10.29026/oes.2023.230014 Cite this Article
    Alexey Porfirev, Svetlana Khonina, Andrey Ustinov, Nikolay Ivliev, Ilya Golub. Vectorial spin-orbital Hall effect of light upon tight focusing and its experimental observation in azopolymer films[J]. Opto-Electronic Science, 2023, 2(7): 230014-1 Copy Citation Text show less
    References

    [1] L Liu, SS Chen, ZZ Lin, X Zhang. A symmetry-breaking phase in two-dimensional FeTe2 with ferromagnetism above room temperature. J Phys Chem Lett, 11, 7893-7900(2020).

    [2] C Córdova, K Ohmori, T Rudelius. Generalized symmetry breaking scales and weak gravity conjectures. J High Energy Phys, 2022, 154(2022).

    [3] F Devínsky. Chirality and the origin of life. Symmetry, 13, 2277(2021).

    [4] SH Yang, R Naaman, Y Paltiel, SSP Parkin. Chiral spintronics. Nat Rev Phys, 3, 328-343(2021).

    [5] JH Cheng, Z Zhang, W Mei, Y Cao, XH Ling et al. Symmetry-breaking enabled topological phase transitions in spin-orbit optics. Opt Express, 31, 23621-23630(2023).

    [6] NB Baranova, AY Savchenko, BY Zel’dovich. Transverse shift of a focal spot due to switching of the sign of circular polarization. JETP Lett, 59, 232-234(1994).

    [7] A Aiello, N Lindlein, C Marquardt, G Leuchs. Transverse angular momentum and geometric spin hall effect of light. Phys Rev Lett, 103, 100401(2009).

    [8] KY Bliokh, MA Alonso, EA Ostrovskaya, A Aiello. Angular momenta and spin-orbit interaction of nonparaxial light in free space. Phys Rev A, 82, 063825(2010).

    [9] WG Zhu, WL She. Transverse angular momentum and transverse barycenter shift of a focused light field due to nonuniform input angular momentum. Opt Lett, 39, 1337-1340(2014).

    [10] SN Khonina, I Golub. Vectorial spin Hall effect of light upon tight focusing. Opt Lett, 47, 2166-2169(2022).

    [11] A Porfirev, S Khonina, A Kuchmizhak. Light–matter interaction empowered by orbital angular momentum: control of matter at the micro-and nanoscale. Prog Quantum Electron, 88, 100459(2023).

    [12] KY Bliokh, FJ Rodríguez-Fortuño, F Nori, AV Zayats. Spin–orbit interactions of light. Nat Photonics, 9, 796-808(2015).

    [13] SN Khonina, I Golub. Breaking the symmetry to structure light. Opt Lett, 46, 2605-2608(2021).

    [14] Z Zhang, W Mei, JH Cheng, YW Tan, ZP Dai et al. Revisiting vortex generation in the spin-orbit interactions of refraction and focusing of light. Phys Rev A, 106, 063520(2022).

    [15] B Richards, E Wolf. Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc Roy Soc A:Math Phys Sci, 253, 358-379(1959).

    [16] SF Pereira, AS van de Nes. Superresolution by means of polarisation, phase and amplitude pupil masks. Opt Commun, 234, 119-124(2004).

    [17] N Bokor, N Davidson. A three dimensional dark focal spot uniformly surrounded by light. Opt Commun, 279, 229-234(2007).

    [18] SN Khonina, SG Volotovskiy, NS Fidirko. Iterative approach to solve the inverse diffraction problem under sharp focusing conditions. Opt Mem Neural Netw, 26, 18-25(2017).

    [19] M Mansuripur. Certain computational aspects of vector diffraction problems. J Opt Soc Am A, 6, 786-805(1989).

    [20] H Kogelnik, T Li. Laser beams and resonators. Appl Opt, 5, 1550-1567(1966).

    [21] J Enderlein, F Pampaloni. Unified operator approach for deriving Hermite–Gaussian and Laguerre–Gaussian laser modes. J Opt Soc Am A, 21, 1553-1558(2004).

    [22] SG Volotovskiy, SV Karpeev, SN Khonina. Algorithm for reconstructing complex coefficients of Laguerre–Gaussian modes from the intensity distribution of their coherent superposition. Comput Opt, 44, 352-362(2020).

    [23] JW Goodman. Introduction to Fourier Optics(1968).

    [24] D Marcuse. Light Transmission Optics(1982).

    [25] L Han, S Liu, P Li, Y Zhang, HC Cheng et al. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams. Phys. Rev. A, 97, 053802(2018).

    [26] A Meshalkin, C Losmanschii, A Prisacar, E Achimova, V Abashkin et al. Carbazole-based azopolymers as media for polarization holographic recording. Adv Phys Res, 1, 86-98(2019).

    [27] A Priimagi, A Shevchenko. Azopolymer-based micro-and nanopatterning for photonic applications. J Polym Sci Part B Polym Phys, 52, 163-182(2014).

    [28] Z Sekkat, J Wood, EF Aust, W Knoll, W Volksen et al. Light-induced orientation in a high glass transition temperature polyimide with polar azo dyes in the side chain. J Opt Soc Am B, 13, 1713-1724(1996).

    [29] Z Sekkat, S Kawata. Laser nanofabrication in photoresists and azopolymers. Laser Photonics Rev, 8, 1-26(2014).

    [30] I Sava, N Hurduc, L Sacarescu, I Apostol, V Damian. Study of the nanostructuration capacity of some azopolymers with rigid or flexible chains. High Perform Polym, 25, 13-24(2013).

    [31] H Ishitobi, I Nakamura, TA Kobayashi, N Hayazawa, Z Sekkat et al. Nanomovement of azo polymers induced by longitudinal fields. ACS Photonics, 1, 190-197(2014).

    [32] A Porfirev, S Khonina, N Ivliev, A Meshalkin, E Achimova et al. Writing and reading with the longitudinal component of light using carbazole-containing azopolymer thin films. Sci Rep, 12, 3477(2022).

    [33] AP Porfirev, SN Khonina, PA Khorin, NA Ivliev. Polarization-sensitive direct laser patterning of azopolymer thin films with vortex beams. Opt Lett, 47, 5080-5083(2022).

    [34] AP Porfirev, NA Ivliev, SA Fomchenkov, SN Khonina. Multi-spiral laser patterning of azopolymer thin films for generation of orbital angular momentum light. Nanomaterials, 13, 612(2023).

    [35] A Ambrosio, L Marrucci, F Borbone, A Roviello, P Maddalena. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nat Commun, 3, 989(2012).

    [36] Z Sekkat. Vectorial motion of matter induced by light fueled molecular machines. OSA Continuum, 1, 668-681(2018).

    [37] Z Sekkat. Model for athermal enhancement of molecular mobility in solid polymers by light. Phys Rev E, 102, 032501(2020).

    [38] K Masuda, R Shinozaki, Y Kinezuka, J Lee, S Ohno et al. Nanoscale chiral surface relief of azo-polymers with nearfield OAM light. Opt Express, 26, 22197-22207(2018).

    [39] K Masuda, R Shinozaki, A Shiraishi, M Ichijo, K Yamane et al. Picosecond optical vortex-induced chiral surface relief in an azo-polymer film. J Nanophoton, 14, 016012(2020).

    Alexey Porfirev, Svetlana Khonina, Andrey Ustinov, Nikolay Ivliev, Ilya Golub. Vectorial spin-orbital Hall effect of light upon tight focusing and its experimental observation in azopolymer films[J]. Opto-Electronic Science, 2023, 2(7): 230014-1
    Download Citation