• Infrared and Laser Engineering
  • Vol. 50, Issue 9, 20210145 (2021)
Shiyao Fu1、2、3, Lei Huang1、2、3, Yanlai Lv1、2、3, and Chunqing Gao1、2、3
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Information Photonics Technology, Ministry of Industry and Information Technology of the People’s Republic of China, Beijing 100081, China
  • 3Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education of the People’s Republic of China, Beijing 100081, China
  • show less
    DOI: 10.3788/IRLA20210145 Cite this Article
    Shiyao Fu, Lei Huang, Yanlai Lv, Chunqing Gao. Advances on the measurement of orbital angular momentum spectra for laser beams (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210145 Copy Citation Text show less
    References

    [1] A Forbes, A Dudley, M McLaren. Creation and detection of optical modes with spatial light modulators. Advances in Optics and Photonics, 8, 200-227(2016).

    [2] D Strickland, G Mourou. Compression of amplified chirped optical pulses. Optics Communications, 55, 447-449(1985).

    [3] G Chang, Z Wei. Ultrafast fiber lasers: an expanding versatile toolbox. iScience, 23, 101101(2020).

    [4] W Liu, M Liu, X Chen, et al. Ultrafast photonics of two dimensional AuTe2Se4/3 in fiber lasers. Communications Physics, 3, 1-6(2020).

    [5] S Fu, X Han, R Song, et al. Generating a 64×64 beam lattice by geometric phase modulation from arbitrary incident polarizations. Optics Letters, 45, 6330-6333(2020).

    [6] S Fu, T Wang, Z Zhang, et al. Selective acquisition of multiple states on hybrid Poincare sphere. Applied Physics Letters, 110, 191102(2017).

    [7] S Fu, C Gao, T Wang, et al. Simultaneous generation of multiple perfect polarization vortices with selective spatial states in various diffraction orders. Optics Letters, 41, 5454-5457(2016).

    [8] H Chang, Q Chang, J Xi, et al. First experimental demonstration of coherent beam combining of more than 100 beams. Photonics Research, 8, 1943-1948(2020).

    [9] C Lei, Y Gu, Z Chen, et al. Incoherent beam combining of fiber lasers by an all-fiber 7× 1 signal combiner at a power level of 14 kW. Optics Express, 26, 10421-10427(2018).

    [10] A M Yao, M J Padgett. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 3, 161-204(2011).

    [11] L Allen, M W Beijersbergen, R J C Spreeuw, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185(1992).

    [12] Y Yang, Q Zhao, L Liu, et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates. Physical Review Applied, 12, 064007(2019).

    [13] H Zhou, J Yang, C Gao, et al. High-efficiency, broadband all-dielectric transmission metasurface for optical vortex generation. Optical Materials Express, 9, 2699-2707(2019).

    [14] J Zhang, C Sun, B Xiong, et al. An InP-based vortex beam emitter with monolithically integrated laser. Nature Communications, 9, 1-6(2018).

    [15] X Cai, J Wang, M J Strain, et al. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [16] J Wang, J Y Yang, I M Fazal, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 6, 488-496(2012).

    [17] N Bozinovic, Y Yue, Y Ren, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [18] A E Willner, H Huang, Y Yan, et al. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 7, 66-106(2015).

    [19] J Wang. Advances in communications using optical vortices. Photonics Research, 4, B14-B28(2016).

    [20] S Yu. Potentials and challenges of using orbital angular momentum communications in optical interconnects. Optics Express, 23, 3075-3087(2015).

    [21] S Fu, Y Zhai, H Zhou, et al. Demonstration of free-space one-to-many multicasting link from orbital angular momentum encoding. Optics Letters, 44, 4753-4756(2019).

    [22] S Fu, Y Zhai, H Zhou, et al. Experimental demonstration of free-space multi-state orbital angular momentum shift keying. Optics Express, 27, 33111-33119(2019).

    [23] S Fu, Y Zhai, H Zhou, et al. Demonstration of high-dimensional free-space data coding/decoding through multi-ring optical vortices. Chinese Optics Letters, 17, 080602(2019).

    [24] M P J Lavery, F C Speirits, S M Barnett, et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [25] M P J Lavery, S M Barnett, F C Speirits, et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica, 1, 1-4(2014).

    [26] S Fu, T Wang, Z Zhang, et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Optics Express, 25, 20098-20108(2017).

    [27] Y Zhai, S Fu, C Yin, et al. Detection of angular acceleration based on optical rotational Doppler effect. Optics Express, 27, 15518-15527(2019).

    [28] Y Zhai, S Fu, J Zhang, et al. Remote detection of a rotator based on rotational Doppler effect. Applied Physics Express, 13, 022012(2020).

    [29] L Fang, M J Padgett, J Wang. Sharing a common origin between the rotational and linear Doppler effects. Laser & Photonics Reviews, 11, 1700183(2017).

    [30] W Zhang, J Gao, D Zhang, et al. Free-space remote sensing of rotation at the photon-counting level. Physical Review Applied, 10, 044014(2018).

    [31] S Qiu, T Liu, Y Ren, et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect. Optics Express, 27, 24781-24792(2019).

    [32] M Padgett, R Bowman. Tweezers with a twist. Nature Photonics, 5, 343-348(2011).

    [33] M Gecevičius, R Drevinskas, M Beresna, et al. Single beam optical vortex tweezers with tunable orbital angular momentum. Applied Physics Letters, 104, 231110(2014).

    [34] Y Liang, B Yao, B Ma, et al. Holographic optical trapping and manipulation based phase-only liquid-crystal spatial light modulator. Acta Optica Sinca, 36, 0309001(2016).

    [35] M Chen, M Mazilu, Y Arita, et al. Dynamics of microparticles trapped in a perfect vortex beam. Optics Letters, 38, 4919-4922(2013).

    [36] X Fang, H Ren, M Gu. Orbital angular momentum holography for high-security encryption. Nature Photonics, 14, 102-108(2020).

    [37] M Granata, C Buy, R Ward, et al. Higher-order Laguerre-Gauss mode generation and interferometry for gravitational wave detectors. Physical Review Letters, 105, 231102(2010).

    [38] A Noack, C Bogan, B Willke. Higher-order Laguerre–Gauss modes in (non-) planar four-mirror cavities for future gravitational wave detectors. Optics Letters, 42, 751-754(2017).

    [39] F Tamburini, B Thidé, G Molina-Terriza, et al. Twisting of light around rotating black holes. Nature Physics, 7, 195-197(2011).

    [40] Q Zhan. Cylindrical vector beams: from mathematical concepts to applications. Advances in Optics and Photonics, 1, 1-57(2009).

    [41] S Fu, C Gao, Y Shi, et al. Generating polarization vortices by using helical beams and a Twyman Green interferometer. Optics Letters, 40, 1775-1778(2015).

    [42] S Fu, Y Zhai, T Wang, et al. Tailoring arbitrary hybrid Poincaré beams through a single hologram. Applied Physics Letters, 111, 211101(2017).

    [43] R Song, C Gao, H Zhou, et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm. Optics Letters, 45, 4626-4629(2020).

    [44] S Fu, C Gao, T Wang, et al. Anisotropic polarization modulation for the production of arbitrary Poincaré beams. JOSA B, 35, 1-7(2018).

    [45] Y Shen, X Yang, D Naidoo, et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica, 7, 820-831(2020).

    [46] V G Niziev, A V Nesterov. Influence of beam polarization on laser cutting efficiency. Journal of Physics D: Applied Physics, 32, 1455(1999).

    [47] M Meier, V Romano, T Feurer. Material processing with pulsed radially and azimuthally polarized laser radiation. Applied Physics A, 86, 329-334(2007).

    [48] W Q Zhao, F Tang, L R Qiu, et al. Research status and application on the focusing properties of cylindrical vector beams. Acta Physica Sinica, 62, 054201(2013).

    [49] Z Zhou, Q Tan, G Jin. Surface plasmon interference formed by tightly focused higher polarization order axially symmetric polarized beams. Chinese Optics Letters, 8, 1178-1181(2010).

    [50] S Y Fu, C Q G. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings. Acta Physica Sinica, 67, 034201(2018).

    [51] H I Sztul, R R Alfano. Double-slit interference with Laguerre-Gaussian beams. Optics Letters, 31, 999-1001(2006).

    [52] O Emile, J Emile. Young’s double-slit interference pattern from a twisted beam. Applied Physics B, 117, 487-491(2014).

    [53] J M Hickmann, E J S Fonseca, W C Soares, et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Physical Review Letters, 105, 053904(2010).

    [54] Soares W C, Vidal I, Caetano D P, et al. Measuring bital angular momentum of a photon using the diffraction reciprocal lattice of a triangular slit[C]Frontiers in Optics, Optical Society of America, 2008: FThO2.

    [55] C Stahl, G Gbur. Analytic calculation of vortex diffraction by a triangular aperture. JOSA A, 33, 1175-1180(2016).

    [56] Y Liu, H Tao, J Pu, et al. Detecting the topological charge of vortex beams using an annular triangle aperture. Optics & Laser Technology, 43, 1233-1236(2011).

    [57] K Dai, C Gao, L Zhong, et al. Measuring OAM states of light beams with gradually-changing-period gratings. Optics Letters, 40, 562-565(2015).

    [58] S Fu, T Wang, Y Gao, et al. Diagnostics of the topological charge of optical vortex by a phase-diffractive element. Chinese Optics Letters, 14, 080501(2016).

    [59] S Zheng, J Wang. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings. Scientific Reports, 7, 40781(2017).

    [60] Q Zhao, M Dong, Y Bai, et al. Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer. Photonics Research, 8, 745-749(2020).

    [61] J Serna, F Encinas-Sanz, G Nemeş. Complete spatial characterization of a pulsed doughnut-type beam by use of spherical optics and a cylindrical lens. JOSA A, 18, 1726-1733(2001).

    [62] V Denisenko, V Shvedov, A S Desyatnikov, et al. Determination of topological charges of polychromatic optical vortices. Optics Express, 17, 23374-23379(2009).

    [63] S N Alperin, R D Niederriter, J T Gopinath, et al. Quantitative measurement of the orbital angular momentum of light with a single, stationary lens. Optics Letters, 41, 5019-5022(2016).

    [64] P Vaity, J Banerji, R P Singh. Measuring the topological charge of an optical vortex by using a tilted convex lens. Physics Letters A, 377, 1154-1156(2013).

    [65] G Gibson, J Courtial, M J Padgett, et al. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 12, 5448-5456(2004).

    [66] I Moreno, J A Davis, B M L Pascoguin, et al. Vortex sensing diffraction gratings. Optics Letters, 34, 2927-2929(2009).

    [67] N Zhang, X C Yuan, R E Burge. Extending the detection range of optical vortices by Dammann vortex gratings. Optics Letters, 35, 3495-3497(2010).

    [68] S Fu, T Wang, S Zhang, et al. Integrating 5 × 5 Dammann gratings to detect orbital angular momentum states of beams with the range of −24 to +24. Applied Optics, 55, 1514-1517(2016).

    [69] S Fu, S Zhang, T Wang, et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices. Optics Express, 24, 6240-6248(2016).

    [70] S Fu, Y Zhai, T Wang, et al. Orbital angular momentum channel monitoring of coaxially multiplexed vortices by diffraction pattern analysis. Applied Optics, 57, 1056-1060(2018).

    [71] J Leach, M J Padgett, S M Barnett, et al. Measuring the orbital angular momentum of a single photon. Physical Review Letters, 88, 257901(2002).

    [72] J Leach, J Courtial, K Skeldon, et al. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Physical Review Letters, 92, 013601(2004).

    [73] M P J Lavery, A Dudley, A Forbes, et al. Robust interferometer for the routing of light beams carrying orbital angular momentum. New Journal of Physics, 13, 093014(2011).

    [74] A F Abouraddy, T M Yarnall, B E A Saleh. Angular and radial mode analyzer for optical beams. Optics Letters, 36, 4683-4685(2011).

    [75] W Zhang, Q Qi, J Zhou, et al. Mimicking Faraday rotation to sort the orbital angular momentum of light. Physical Review Letters, 112, 153601(2014).

    [76] G C G Berkhout, M P J Lavery, J Courtial, et al. Efficient sorting of orbital angular momentum states of light. Physical Review Letters, 105, 153601(2010).

    [77] M Mirhosseini, M Malik, Z Shi, et al. Efficient separation of the orbital angular momentum eigenstates of light. Nature Communications, 4, 1-6(2013).

    [78] M N O’Sullivan, M Mirhosseini, M Malik, et al. Near-perfect sorting of orbital angular momentum and angular position states of light. Optics Express, 20, 24444-24449(2012).

    [79] C Li, S Zhao. Efficient separating orbital angular momentum mode with radial varying phase. Photonics Research, 5, 267-270(2017).

    [80] Y Wen, I Chremmos, Y Chen, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Physical Review Letters, 120, 193904(2018).

    [81] Y Wen, I Chremmos, Y Chen, et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems. Optica, 7, 254-262(2020).

    [82] M P J Lavery, D J Robertson, A Sponselli, et al. Efficient measurement of an optical orbital-angular-momentum spectrum comprising more than 50 states. New Journal of Physics, 15, 013024(2013).

    [83] M P J Lavery, G C G Berkhout, J Courtial, et al. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. Journal of Optics, 13, 064006(2011).

    [84] M P J Lavery, D J Robertson, G C G Berkhout, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon. Optics Express, 20, 2110-2115(2012).

    [85] Mgan K S, Raghu I S, Johnson E G. Design fabrication of diffractive optics f bital angular momentum space division multiplexing[C]Advanced Fabrication Technologies f MicroNano Optics Photonics VIII. International Society f Optics Photonics, 2015, 9374: 93740Y.

    [86] G Ruffato, M Massari, G Parisi, et al. Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics. Optics Express, 25, 7859-7868(2017).

    [87] S Lightman, G Hurvitz, R Gvishi, et al. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica, 4, 605-610(2017).

    [88] G Ruffato, M Girardi, M Massari, et al. A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams. Scientific Reports, 8, 1-12(2018).

    [89] G F Walsh. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate. Optics Express, 24, 6689-6704(2016).

    [90] G F Walsh, Sio L De, D E Roberts, et al. Parallel sorting of orbital and spin angular momenta of light in a record large number of channels. Optics Letters, 43, 2256-2259(2018).

    [91] G Ruffato, P Capaldo, M Massari, et al. Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics. Optics Express, 27, 15750-15764(2019).

    [92] J Fang, Z Xie, T Lei, et al. Spin-dependent optical geometric transformation for cylindrical vector beam multiplexing communication. ACS Photonics, 5, 3478-3484(2018).

    [93] M Malik, M Mirhosseini, M P J Lavery, et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Communications, 5, 1-7(2014).

    [94] B Wang, Y Wen, J Zhu, et al. Sorting full angular momentum states with Pancharatnam-Berry metasurfaces based on spiral transformation. Optics Express, 28, 16342-16351(2020).

    [95] J A Anguita, M A Neifeld, B V Vasic. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. Applied Optics, 47, 2414-2429(2008).

    [96] M T Gruneisen, R C Dymale, K E Stoltenberg, et al. Optical vortex discrimination with a transmission volume hologram. New Journal of Physics, 13, 083030(2011).

    [97] H D L Pires, J Woudenberg, Exter M P Van. Measurement of the orbital angular momentum spectrum of partially coherent beams. Optics Letters, 35, 889-891(2010).

    [98] H D L Pires, H C B Florijn, Exter M P Van. Measurement of the spiral spectrum of entangled two-photon states. Physical Review Letters, 104, 020505(2010).

    [99] A K Jha, G S Agarwal, R W Boyd. Partial angular coherence and the angular Schmidt spectrum of entangled two-photon fields. Physical Review A, 84, 063847(2011).

    [100] M Malik, S Murugkar, J Leach, et al. Measurement of the orbital-angular-momentum spectrum of fields with partial angular coherence using double-angular-slit interference. Physical Review A, 86, 063806(2012).

    [101] A K Jha, J Leach, B Jack, et al. Angular two-photon interference and angular two-qubit states. Physical Review Letters, 104, 010501(2010).

    [102] A Belmonte, J P Torres. Optical Doppler shift with structured light. Optics Letters, 36, 4437-4439(2011).

    [103] H Zhou, D Fu, J Dong, et al. Theoretical analysis and experimental verification on optical rotational Doppler effect. Optics Express, 24, 10050-10056(2016).

    [104] M V Vasnetsov, J P Torres, D V Petrov, et al. Observation of the orbital angular momentum spectrum of a light beam. Optics Letters, 28, 2285-2287(2003).

    [105] H L Zhou, D Z Fu, J J Dong, et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light: Science & Applications, 6, e16251(2017).

    [106] P Bierdz, H Deng. A compact orbital angular momentum spectrometer using quantum zeno interrogation. Optics Express, 19, 11615-11622(2011).

    [107] P Bierdz, M Kwon, C Roncaioli, et al. High fidelity detection of the orbital angular momentum of light by time mapping. New Journal of Physics, 15, 113062(2013).

    [108] E Karimi, L Marrucci, Lisio C de, et al. Time-division multiplexing of the orbital angular momentum of light. Optics Letters, 37, 127-129(2012).

    [109] P Clemente, V Durán, E Tajahuerce, et al. Compressive holography with a single-pixel detector. Optics Letters, 38, 2524-2527(2013).

    [110] Z Zhang, X Wang, G Zheng, et al. Fast Fourier single-pixel imaging via binary illumination. Scientific Reports, 7, 12029(2017).

    [111] X Hu, H Zhang, Q Zhao, et al. Single-pixel phase imaging by Fourier spectrum sampling. Applied Physics Letters, 114, 051102(2019).

    [112] K Ota, Y Hayasaki. Complex-amplitude single-pixel imaging. Optics Letters, 43, 3682-3685(2018).

    [113] R Liu, S Zhao, P Zhang, et al. Complex wavefront reconstruction with single-pixel detector. Applied Physics Letters, 114, 161901(2019).

    [114] S Zhao, R Liu, P Zhang, et al. Fourier single-pixel reconstruction of a complex amplitude optical field. Optics Letters, 44, 3278-3281(2019).

    [115] S Zhao, S Chen, X Wang, et al. Measuring the complex spectrum of orbital angular momentum and radial index with a single-pixel detector. Optics Letters, 45, 5990-5993(2020).

    [116] J M Andersen, S N Alperin, A A Voitiv, et al. Characterizing vortex beams from a spatial light modulator with collinear phase-shifting holography. Applied Optics, 58, 404-409(2019).

    [117] I A Litvin, A Dudley, F S Roux, et al. Azimuthal decomposition with digital holograms. Optics Express, 20, 10996-11004(2012).

    [118] P Zhao, S Li, X Feng, et al. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method. Optics Letters, 42, 1080-1083(2017).

    [119] A D’Errico, R D’Amelio, B Piccirillo, et al. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams. Optica, 4, 1350-1357(2017).

    [120] M A Cox, E Toninelli, L Cheng, et al. A high-speed, wavelength invariant, single-pixel wavefront sensor with a digital micromirror device. IEEE Access, 7, 85860-85866(2019).

    [121] S Pachava, A Dixit, B Srinivasan. Modal decomposition of Laguerre Gaussian beams with different radial orders using optical correlation technique. Optics Express, 27, 13182-13193(2019).

    [122] A Volyar, M Bretsko, Y Akimova, et al. Measurement of the vortex spectrum in a vortex-beam array without cuts and gluing of the wavefront. Optics Letters, 43, 5635-5638(2018).

    [123] A Volyar, M Bretsko, Y Akimova, et al. Digital sorting perturbed Laguerre–Gaussian beams by radial numbers. JOSA A, 37, 959-968(2020).

    [124] S Fu, Y Zhai, J Zhang, et al. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX, 1, 19(2020).

    CLP Journals

    [1] Wei Zheng, Di Zhang, Hao Yuan, Nana Yu, Sixing Xi, Guilin Wang, Shuai Ma, Xiaolei Wang, Liying Lang. High capacity optical information encryption technology based on OAM holography and frequency shift[J]. Infrared and Laser Engineering, 2023, 52(7): 20230313

    [2] Beiyu Wang, Jiaxin Han, Cheng Jin. Features of vortex high harmonics generated by the Laguerre-Gaussian beam with nonzero radial node[J]. Infrared and Laser Engineering, 2022, 51(2): 20210895

    Shiyao Fu, Lei Huang, Yanlai Lv, Chunqing Gao. Advances on the measurement of orbital angular momentum spectra for laser beams (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210145
    Download Citation