[1] D T ATTWOOD. Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications(1999).
[2] A THOMPSON, D ATTWOOD, E GULLIKSON et al. X-Rray Data Booklet(2009).
[3] J R LEMEN, A M TITLE, D J AKIN et al. The
[4] M BORN, E WOLF. Principles of Optics 7th Edition(1999).
[5] M C RICHARDSON, K SHINOHARA, K A TANAKA et al. Pulsed X-ray microscopy of biological specimens with laser plasma sources. San Diego, 1741, 133-141(92).
[6] X WANG, Y HUANG, B Z MU et al. 18.2 nm Schwarzschild microscope for diagnostics of hot electron transport. Optik, 123, 947-949(2012).
[7] J BJORKHOLM. EUV lithography: -the successor to optical lithography?. Intel Technology Journal(2001).
[8] E SPILLER. Low-loss reflection coatings using absorbing materials. Applied Physics Letters, 20, 365-367(1972).
[9] Q S HUANG, V MEDVEDEV, R VAN DE KRUIJS et al. Spectral tailoring of nanoscale EUV and soft X-ray multilayer optics. Applied Physics Reviews, 4(2017).
[10] A PIRATI, R PEETERS, D SMITH et al. EUV lithography performance for manufacturing: status and outlook, 9776(2016).
[11] Z S WANG, J T ZHU, Z ZHANG et al. Development of Multilayer Optics in EUV, Soft X-ray and X-ray Range at IPOE, 391-399(2009).
[12] 12王占山, 黄秋实, 张众, 等. 极紫外、X射线和中子薄膜光学元件与系统[J]. 光学学报, 2021, 41(1): 451-469. doi: 10.3788/aos202141.0131001WANGZH SH, HUANGQ SH, ZHANGZH, et al. Extreme ultraviolet, X-ray and neutron thin film optical components and systems[J]. Acta Optica Sinica, 2021, 41(1): 451-469. (in Chinese). doi: 10.3788/aos202141.0131001
[13] A K HEAD. The two-mirror aplanat. Proceedings of the Physical Society Section B, 70, 945-949(1957).
[14] 14王新, 穆宝忠, 黄怡, 等. 等离子体诊断用18.2nm Schwarzschild显微镜[J]. 强激光与粒子束, 2011, 23(3): 647-651. doi: 10.3788/hplpb20112303.0647WANGX, MUB ZH, HUANGY, et al. 18.2nm Schwarzschild microscope for plasma diagnosis[J]. High Power Laser and Particle Beams, 2011, 23(3): 647-651. (in Chinese). doi: 10.3788/hplpb20112303.0647
[15] X WANG, B Z MU, L JIANG et al. Fabrication of nanoscale patterns in lithium fluoride crystal using a 13.5 nm Schwarzschild objective and a laser produced plasma source. Review of Scientific Instruments, 82, 123702(2011).
[16] 16王新, 穆宝忠, 黄怡, 等. 13.5nm Schwarzschild显微镜系统及成像实验[J]. 光学 精密工程, 2011, 19(8): 1709-1715. doi: 10.3788/ope.20111908.1709WANGX, MUB ZH, HUANGY, et al. 13.5 nm Schwarzschild microscope and imaging experiment[J]. Opt. Precision Eng., 2011, 19(8): 1709-1715. (in Chinese). doi: 10.3788/ope.20111908.1709
[17] X WANG, B Z MU, J T ZHU et al. A novel extreme ultraviolet four channels normal incidence imaging system for plasma diagnostics of Z-pinch facility. Review of Scientific Instruments, 84(2013).
[18] S H CHEN, X WANG, Q S HUANG et al. 13.5 nm Schwarzschild microscope with high magnification and high resolution. Chinese Optics Letters, 15(2017).
[19] Z ZHANG, W B LI, Q S HUANG et al. A table-top EUV focusing optical system with high energy density using a modified Schwarzschild objective and a laser-plasma light source. Review of Scientific Instruments, 89, 103109(2018).
[20] 20徐妙华, 梁天骄, 张杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子[J]. 物理学报, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357XUM H, LIANGT J, ZHANGJ. Bremsstrahlung diagnostics of hot electrons in laser-plasma interactions[J]. Acta Physica Sinica, 2006, 55(5): 2357-2363. (in Chinese). doi: 10.7498/aps.55.2357
[21] 21熊俊. 导向锥快点火基础物理研究: 金锥对靶背向产生超热电子的影响[D]. 北京: 中国工程物理研究院, 2006.XIONGJ. Basic Physical Research on Fast Ignition of Guide Cone-the Influence of Gold Cone on the Generation of Superheating Electrons at the Back of Target[D]. Beijing: China Academy of Engineering Physics, 2006. (in Chinese)
[22] 22黄小军, 彭翰生, 魏晓峰, 等. 100 TW级超短超强钛宝石激光装置[J]. 强激光与粒子束, 2005, 17(11): 1685-1688.HUANGX J, PENGH SH, WEIX F, et al. Ultra-short ultra-intense Ti: sapphire laser facility with peak power of hundred-terawatt-level[J]. High Power Laser & Particle Beams, 2005, 17(11): 1685-1688. (in Chinese)
[23] Y HORIKAWA, S MOCHIMARU, Y IKETAKI et al. Design and fabrication of the Schwarzschild objective for soft X-ray microscopes, 1720, 217-225(1992).
[24] W ACKERMANN, G ASOVA, V AYVAZYAN et al. Operation of a free-electron laser from the extreme ultraviolet to the water window operation of a free-electron laser from the extreme ultraviolet to the water window. Nature photonics, 1, 336-342(2007).
[25] E ALLARIA, R APPIO, L BADANO et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nature Photonics, 6, 699-704(2012).
[26] M STÖRMER, F SIEWERT, C HORSTMANN et al. Coatings for FEL optics: preparation and characterization of B4C and Pt. Journal of Synchrotron Radiation, 25, 116-122(2018).
[27] 27朱京涛, 岳帅鹏, 涂昱淳, 等. 氮气反应溅射制备软X射线Co/Ti多层膜[J]. 光学 精密工程, 2015, 23(1): 10-14. doi: 10.3788/ope.20152301.0010ZHUJ T, YUESH P, TUY CH, et al. Preparation of Co/Ti multilayer in soft X-ray region by nitrogen reactive sputtering[J]. Optics and Precision Engineering, 2015, 23(1): 10-14. (in Chinese). doi: 10.3788/ope.20152301.0010
[28] 28朱京涛, 宋竹青, 丁涛, 等. 极紫外Mg/SiC、Mg/Co多层膜的稳定性[J]. 光学 精密工程, 2013, 21(6): 1380-1386. doi: 10.3788/ope.20132106.1380ZHUJ T, SONGZH Q, DINGT, et al. Stability of Mg/SiC, Mg/Co EUV multilayers[J]. Optics and Precision Engineering, 2013, 21(6): 1380-1386. (in Chinese). doi: 10.3788/ope.20132106.1380
[29] T KOYAMA, H YUMOTO, T MIURA et al. Damage threshold of coating materials on X-ray mirror for X-ray free electron laser. Review of Scientific Instruments, 87(2016).
[30] I MILOV, I A MAKHOTKIN, R SOBIERAJSKI et al. Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser. Optics Express, 26, 19665-19685(2018).
[31] Z ZHANG, R Z QI, Y Y YAO et al. Improving thickness uniformity of Mo/Si multilayers on curved spherical substrates by a masking technique. Coatings, 9, 851(2019).
[32] R E VEST, S GRANTHAM. Response of a silicon photodiode to pulsed radiation. Applied Optics, 42, 5054-5063(2003).
[33] J CHALUPSKÝ, J KRZYWINSKI, L JUHA et al. Spot size characterization of focused non-Gaussian X-ray laser beams. Optics Express, 18, 27836-27845(2010).
[34] W B LI, L Y PAN, C L WANG et al. Multi-shot damage on Mo/Si multilayer induced by nanosecond EUV radiation. AIP Advances, 11(2021).
[35] G A ROCHAU, J E BAILEY, Y MARON et al. Radiating shock measurements in the Z-pinch dynamic hohlraum. Physical Review Letters, 100, 125004(2008).
[36] 36伊圣振, 司昊轩, 黄秋实, 等. 激光惯性约束聚变X射线诊断用多通道Kirkpatrick-Baez成像系统研究进展[J]. 光学学报, 2022, 42(11): 110-121.YISH ZH, SIH X, HUANGQ SH, et al. Research progress of multi-channel Kirkpatrick-baez microscope for X-ray diagnostics in laser inertial confinement fusion[J]. Acta Optica Sinica, 2022, 42(11): 110-121. (in Chinese)
[37] 37门宗政. 鞘层对EAST托卡马克中等离子体与壁相互作用的影响[D]. 合肥: 中国科学技术大学, 2021. doi: 10.7498/aps.70.20202003MEN Z ZH. Effects of Sheath on Plasma-Wall Interactions in EAST Tokamak[D]. Hefei: University of Science and Technology of China, 2021. (in Chinese). doi: 10.7498/aps.70.20202003