• Advanced Photonics
  • Vol. 2, Issue 5, 054001 (2020)
Zengle Cao1,†, Fengrui Hu1, Chunfeng Zhang1, Shining Zhu1..., Min Xiao1,2 and Xiaoyong Wang1,*|Show fewer author(s)
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, School of Physics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing, China
  • 2University of Arkansas, Department of Physics, Fayetteville, Arkansas, United States
  • show less
    DOI: 10.1117/1.AP.2.5.054001 Cite this Article Set citation alerts
    Zengle Cao, Fengrui Hu, Chunfeng Zhang, Shining Zhu, Min Xiao, Xiaoyong Wang, "Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review," Adv. Photon. 2, 054001 (2020) Copy Citation Text show less
    References

    [1] G. Rose. De novis quibusdam fossilibus quae in montibus uraliis inveniuntur(1839).

    [2] A. R. Chakhmouradian, P. M. Woodward. Celebrating 175 years of perovskite research: a tribute to Roger H. Mitchell. Phys. Chem. Miner., 41, 387-391(2014).

    [3] S. Bai, Z. Yuan, F. Gao. Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. J. Mater. Chem. C, 4, 3898-3904(2016).

    [4] C. Yang et al. Nanocrystals of halide perovskite: synthesis, properties, and applications. J. Energy Chem., 27, 622-636(2018).

    [5] L. Protesescu et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 15, 3692-3696(2015). https://doi.org/10.1021/nl5048779

    [6] H. L. Wells. Über die cäsium- und kalium-bleihalogenide. Z. Anorg. Chem., 3, 195-210(1893).

    [7] A. Kojima et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 131, 6050-6051(2009).

    [8] I. Chung et al. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 485, 486-489(2012).

    [9] H.-S. Kim et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2, 591(2012).

    [10] M. M. Lee et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338, 643-647(2012).

    [11] N.-G. Park. Perovskite solar cells: an emerging photovoltaic technology. Mater. Today, 18, 65-72(2015).

    [12] J.-P. Correa-Baena et al. Promises and challenges of perovskite solar cells. Science, 358, 739-744(2017).

    [13] M. L. Petrus et al. Capturing the sun: a review of the challenges and perspectives of perovskite solar cells. Adv. Energy Mater., 7, 1700264(2017).

    [14] Q. Jiang et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics, 13, 460-466(2019).

    [15] Best research-cell efficiency chart(2020).

    [16] Z.-K. Tan et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol., 9, 687-692(2014).

    [17] F. Deschler et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett., 5, 1421-1426(2014).

    [18] V. D’Innocenzo et al. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc., 136, 17730-17733(2014).

    [19] S. D. Stranks, H. J. Snaith. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol., 10, 391-402(2015).

    [20] J. Shamsi et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev., 119, 3296-3348(2019).

    [21] L. C. Schmidt et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc., 136, 850-853(2014). https://doi.org/10.1021/ja4109209

    [22] D. Zhang et al. Solution-phase synthesis of cesium lead halide perovskite nanowires. J. Am. Chem. Soc., 137, 9230-9233(2015).

    [23] Q. A. Akkerman et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc., 138, 1010-1016(2016).

    [24] D. N. Dirin et al. Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Lett., 16, 5866-5874(2016).

    [25] F. Zhang et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I. ACS Nano, 9, 4533-4542(2015). https://doi.org/10.1021/acsnano.5b01154

    [26] S. Sun et al. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano, 10, 3648-3657(2016).

    [27] J. A. Sichert et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett., 15, 6521-6527(2015).

    [28] D. Zhang et al. Ultrathin colloidal cesium lead halide perovskite nanowires. J. Am. Chem. Soc., 138, 13155-13158(2016).

    [29] Q. A. Akkerman et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc., 137, 10276-10281(2015).

    [30] V. A. Hintermayr et al. Tuning the optical properties of perovskite nanoplatelets through composition and thickness by ligand-assisted exfoliation. Adv. Mater., 28, 9478-9485(2016).

    [31] G. Nedelcu et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett., 15, 5635-5640(2015). https://doi.org/10.1021/acs.nanolett.5b02404

    [32] Y. Tong et al. Dilution-induced formation of hybrid perovskite nanoplatelets. ACS Nano, 10, 10936-10944(2016).

    [33] T. C. Jellicoe et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc., 138, 2941-2944(2016).

    [34] F. Di Stasio et al. Near-unity photoluminescence quantum yield in CsPbBr3 nanocrystal solid-state films via postsynthesis treatment with lead bromide. Chem. Mater., 29, 7663-7667(2017). https://doi.org/10.1021/acs.chemmater.7b02834

    [35] F. Liu et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano, 11, 10373-10383(2017). https://doi.org/10.1021/acsnano.7b05442

    [36] N. Mondal, A. De, A. Samanta. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Lett., 4, 32-39(2018).

    [37] A. Swarnkar et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 354, 92-95(2016). https://doi.org/10.1126/science.aag2700

    [38] Q. A. Akkerman et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat. Energy, 2, 16194(2016).

    [39] D. Zhou et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells. Adv. Mater., 29, 1704149(2017).

    [40] B. Li et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun., 9, 1076(2018). https://doi.org/10.1038/s41467-018-03169-0

    [41] J. Song et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater., 27, 7162-7167(2015). https://doi.org/10.1002/adma.201502567

    [42] X. Li et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater., 26, 2435-2445(2016). https://doi.org/10.1002/adfm.201600109

    [43] G. Li et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater., 28, 3528-3534(2016).

    [44] J. Pan et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater., 28, 8718-8725(2016).

    [45] C. Sun et al. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Adv. Mater., 28, 10088-10094(2016).

    [46] J. Xing et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano, 10, 6623-6630(2016).

    [47] H. C. Yoon et al. Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance. ACS Appl. Mater. Interfaces, 8, 18189-18200(2016).

    [48] S. Yakunin et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun., 6, 8056(2015).

    [49] S. Liu et al. Random lasing actions in self-assembled perovskite nanoparticles. Opt. Eng., 55, 057102(2016).

    [50] C. H. Lin et al. Large-area lasing and multicolor perovskite quantum dot patterns. Adv. Opt. Mater., 6, 1800474(2018).

    [51] P. Ramasamy et al. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun., 52, 2067-2070(2016).

    [52] J. Zhang et al. High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals. RSC Adv., 7, 36722-36727(2017). https://doi.org/10.1039/C7RA06597C

    [53] G. H. Ahmed et al. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Lett., 3, 2301-2307(2018). https://doi.org/10.1021/acsenergylett.8b01441

    [54] D. Li et al. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its application for high-performance flexible ultraviolet photodetectors. Adv. Funct. Mater., 28, 1804429(2018).

    [55] Q. Chen et al. All-inorganic perovskite nanocrystal scintillators. Nature, 561, 88-93(2018).

    [56] J. H. Heo et al. High-performance next-generation perovskite nanocrystal scintillator for nondestructive x-ray imaging. Adv. Mater., 30, 1801743(2018).

    [57] Y. Shirasaki et al. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics, 7, 13-23(2013).

    [58] C. R. Kagan et al. Building devices from colloidal quantum dots. Science, 353, aac5523(2016).

    [59] J. M. Pietryga et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev., 116, 10513-10622(2016).

    [60] A. L. Efros, A. L. Efros. Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond.-USSR, 16, 772-775(1982).

    [61] A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science, 271, 933-937(1996).

    [62] W. E. Moerner, L. Kador. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett., 62, 2535-2538(1989).

    [63] L.-Q. Li, L. M. Davis. Single photon avalanche diode for single molecule detection. Rev. Sci. Instrum., 64, 1524-1529(1993).

    [64] M. Nirmal et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 383, 802-804(1996).

    [65] C. Galland et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature, 479, 203-207(2011).

    [66] B. Lounis et al. Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem. Phys. Lett., 329, 399-404(2000).

    [67] H. Htoon et al. Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots. Phys. Rev. B, 77, 035328(2008).

    [68] G. W. Wen et al. Quantum-confined stark effects in semiconductor quantum dots. Phys. Rev. B, 52, 5913-5922(1995).

    [69] S. A. Empedocles, M. G. Bawendi. Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots. Science, 278, 2114-2117(1997).

    [70] J. Even et al. Electronic model for self-assembled hybrid organic/perovskite semiconductors: reverse band edge electronic states ordering and spin-orbit coupling. Phys. Rev. B, 86, 205301(2012).

    [71] W.-J. Yin, T. Shi, Y. Yan. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater., 26, 4653-4658(2014).

    [72] T. M. Brenner et al. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater., 1, 15007(2016).

    [73] M. V. Kovalenko, L. Protesescu, M. I. Bodnarchuk. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 358, 745-750(2017).

    [74] S. A. Kulkarni et al. Perovskite nanostructures: leveraging quantum effects to challenge optoelectronic limits. Mater. Today, 33, 122-140(2020).

    [75] L. Protesescu et al. Dismantling the ‘red wall’ of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano, 11, 3119-3134(2017).

    [76] C. de Weerd et al. Energy transfer between inorganic perovskite nanocrystals. J. Phys. Chem. C, 120, 13310-13315(2016).

    [77] H. Zhang et al. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun., 10, 1088(2019).

    [78] B. T. Diroll, H. Zhou, R. D. Schaller. Low-temperature absorption, photoluminescence, and lifetime of CsPbX3 (X = Cl, Br, I) nanocrystals. Adv. Funct. Mater., 28, 1800945(2018). https://doi.org/10.1002/adfm.201800945

    [79] K. Wei et al. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots. Opt. Lett., 41, 3821-3824(2016). https://doi.org/10.1364/OL.41.003821

    [80] J. M. Li et al. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Adv., 6, 78311-78316(2016).

    [81] J.-P. Ma et al. Defect-triggered phase transition in cesium lead halide perovskite nanocrystals. ACS Materials Lett., 1, 185-191(2019).

    [82] J. Aneesh et al. Ultrafast exciton dynamics in colloidal CsPbBr3 perovskite nanocrystals: biexciton effect and Auger recombination. J. Phys. Chem. C, 121, 4734-4739(2017). https://doi.org/10.1021/acs.jpcc.7b00762

    [83] N. S. Makarov et al. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium-lead-halide perovskite quantum dots. Nano Lett., 16, 2349-2362(2016).

    [84] Q. Liu et al. Exciton relaxation dynamics in photo-excited CsPbI3 perovskite nanocrystals. Sci. Rep., 6, 29442(2016). https://doi.org/10.1038/srep29442

    [85] J. A. Castaneda et al. Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement. ACS Nano, 10, 8603-8609(2016).

    [86] K. Wei et al. Observation of ultrafast exciton-exciton annihilation in CsPbBr3 quantum dots. Adv. Opt. Mater., 4, 1993-1997(2016). https://doi.org/10.1002/adom.201600352

    [87] A. Mondal et al. Ultrafast exciton many-body interactions and hot-phonon bottleneck in colloidal cesium lead halide perovskite nanocrystals. Phys. Rev. B, 98, 115418(2018).

    [88] B. B. Luo et al. Synthesis, optical properties, and exciton dynamics of organolead bromide perovskite nanocrystals. J. Phys. Chem. C, 119, 26672-26682(2015).

    [89] D. Rossi et al. Light-induced activation of forbidden exciton transition in strongly confined perovskite quantum dots. ACS Nano, 12, 12436-12443(2018).

    [90] G. R. Yettapu et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett., 16, 4838-4848(2016). https://doi.org/10.1021/acs.nanolett.6b01168

    [91] S. D. Stranks et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342, 341-344(2013).

    [92] G. Xing et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 342, 344-347(2013). https://doi.org/10.1126/science.1243167

    [93] A. Marchioro et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat. Photonics, 8, 250-255(2014).

    [94] J. S. Manser, P. V. Kamat. Band filling with free charge carriers in organometal halide perovskites. Nat. Photonics, 8, 737-743(2014).

    [95] C. Wehrenfennig et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater., 26, 1584-1589(2014).

    [96] G. H. Ahmed et al. Shape-tunable charge carrier dynamics at the interfaces between perovskite nanocrystals and molecular acceptors. J. Phys. Chem. Lett., 7, 3913-3919(2016).

    [97] R. Begum et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. J. Am. Chem. Soc., 139, 731-737(2017). https://doi.org/10.1021/jacs.6b09575

    [98] K. Wu et al. Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc., 137, 12792-12795(2015). https://doi.org/10.1021/jacs.5b08520

    [99] P. Maity, J. Dana, H. N. Ghosh. Multiple charge transfer dynamics in colloidal CsPbBr3 perovskite quantum dots sensitized molecular adsorbate. J. Phys. Chem. C, 120, 18348-18354(2016). https://doi.org/10.1021/acs.jpcc.6b06853

    [100] X. Luo et al. Picosecond multi-hole transfer and microsecond charge-separated states at the perovskite nanocrystal/tetracene interface. Chem. Sci., 10, 2459-2464(2019).

    [101] J. Dana et al. Concurrent ultrafast electron- and hole-transfer dynamics in CsPbBr3 perovskite and quantum dots. ACS Omega, 3, 2706-2714(2018). https://doi.org/10.1021/acsomega.8b00276

    [102] X. Luo et al. Triplet energy transfer from CsPbBr3 nanocrystals enabled by quantum confinement. J. Am. Chem. Soc., 141, 4186-4190(2019). https://doi.org/10.1021/jacs.8b13180

    [103] X. Luo et al. Mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface. Nat. Commun., 11, 28(2020).

    [104] K. Mase et al. Triplet sensitization by perovskite nanocrystals for photon upconversion. Chem. Commun., 53, 8261-8264(2017).

    [105] Y. Wang et al. Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain. Nano Lett., 18, 4976-4984(2018). https://doi.org/10.1021/acs.nanolett.8b01817

    [106] J. Pan et al. Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission. J. Phys. Chem. Lett., 6, 5027-5033(2015).

    [107] Y. Wang et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett., 16, 448-453(2016).

    [108] G. Nagamine et al. Two-photon absorption and two-photon-induced gain in perovskite quantum dots. J. Phys. Chem. Lett., 9, 3478-3484(2018).

    [109] Y. Xu et al. Two-photon-pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc., 138, 3761-3768(2016).

    [110] C. J. Wang et al. Light emission and amplification in charged CdSe quantum dots. J. Phys. Chem. B, 108, 9027-9031(2004).

    [111] K. Wu et al. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol., 12, 1140-1147(2017).

    [112] Z. P. Hu et al. Enhanced two-photon-pumped emission from in situ synthesized nonblinking CsPbBr3/SiO2 nanocrystals with excellent stability. Adv. Opt. Mater., 6, 1700997(2018). https://doi.org/10.1002/adom.201700997

    [113] G. Raino et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 563, 671-675(2018).

    [114] C. Zhou et al. Cooperative excitonic quantum ensemble in perovskite-assembly superlattice microcavities. Nat. Commun., 11, 329(2020).

    [115] R. Bonifacio, L. A. Lugiato. Cooperative radiation processes in 2-level systems: superfluorescence. Phys. Rev. A, 11, 1507-1521(1975).

    [116] D. Meiser, M. J. Holland. Steady-state superradiance with alkaline-earth-metal atoms. Phys. Rev. A, 81, 033847(2010).

    [117] J. G. Bohnet et al. A steady-state superradiant laser with less than one intracavity photon. Nature, 484, 78-81(2012).

    [118] R. G. Neuhauser et al. Correlation between fluorescence intermittency and spectral diffusion in single semiconductor quantum dots. Phys. Rev. Lett., 85, 3301-3304(2000).

    [119] Y. Chen et al. ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc., 130, 5026-5027(2008).

    [120] S. Hohng, T. Ha. Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc., 126, 1324-1325(2004).

    [121] H. Qin et al. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. J. Am. Chem. Soc., 136, 179-187(2014).

    [122] O. Chen et al. Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater., 12, 445-451(2013).

    [123] Y. S. Park et al. Room temperature single-photon emission from individual perovskite quantum dots. ACS Nano, 9, 10386-10393(2015).

    [124] F. Hu et al. Slow Auger recombination of charged excitons in nonblinking perovskite nanocrystals without spectral diffusion. Nano Lett., 16, 6425-6430(2016).

    [125] F. Hu et al. Superior optical properties of perovskite nanocrystals as single photon emitters. ACS Nano, 9, 12410-12416(2015).

    [126] D. K. Sharma et al. Stark effect and environment-induced modulation of emission in single halide perovskite nanocrystals. ACS Nano, 13, 624-632(2019).

    [127] G. Raino et al. Single cesium lead halide perovskite nanocrystals at low temperature: fast single-photon emission, reduced blinking, and exciton fine structure. ACS Nano, 10, 2485-2490(2016).

    [128] P. Tamarat et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater., 18, 717-724(2019).

    [129] H. Huang et al. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett., 2, 2071-2083(2017).

    [130] J. Even et al. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett., 4, 2999-3005(2013).

    [131] J. Even, L. Pedesseau, C. Katan. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C, 118, 11566-11572(2014).

    [132] M. A. Becker et al. Bright triplet excitons in caesium lead halide perovskites. Nature, 553, 189-193(2018).

    [133] C. Yin et al. Bright-exciton fine-structure splittings in single perovskite nanocrystals. Phys. Rev. Lett., 119, 026401(2017).

    [134] M. Fu et al. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett., 17, 2895-2901(2017).

    [135] M. O. Nestoklon et al. Optical orientation and alignment of excitons in ensembles of inorganic perovskite nanocrystals. Phys. Rev. B, 97, 235304(2018).

    [136] R. Ben Aich et al. Bright-exciton splittings in inorganic cesium lead halide perovskite nanocrystals. Phys. Rev. Appl., 11, 034042(2019).

    [137] C. C. Stoumpos et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des., 13, 2722-2727(2013). https://doi.org/10.1021/cg400645t

    [138] P. Cottinghama, R. L. Brutchey. On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Commun., 52, 5246-5249(2016). https://doi.org/10.1039/C6CC01088A

    [139] F. Bertolotti et al. Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals. ACS Nano, 11, 3819-3831(2017).

    [140] Q. Zhao et al. Size-dependent lattice structure and confinement properties in CsPbI3 perovskite nanocrystals: negative surface energy for stabilization. ACS Energy Lett., 5, 238-247(2020). https://doi.org/10.1021/acsenergylett.9b02395

    [141] C. Yin et al. Transition from doublet to triplet excitons in single perovskite nanocrystals. J. Phys. Chem. Lett., 11, 5750-5755(2020).

    [142] M. Isarov et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Lett., 17, 5020-5026(2017). https://doi.org/10.1021/acs.nanolett.7b02248

    [143] L. Biadala et al. Direct observation of the two lowest exciton zero-phonon lines in single CdSe/ZnS nanocrystals. Phys. Rev. Lett., 103, 037404(2009).

    [144] L. Biadala et al. Band-edge exciton fine structure of single CdSe/ZnS nanocrystals in external magnetic fields. Phys. Rev. Lett., 105, 157402(2010).

    [145] M. Fu et al. Unraveling exciton-phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons. Nat. Commun., 9, 3318(2018). https://doi.org/10.1038/s41467-018-05876-0

    [146] P. C. Sercel et al. Exciton fine structure in perovskite nanocrystals. Nano Lett., 19, 4068-4077(2019).

    [147] P. C. Sercel et al. Quasicubic model for metal halide perovskite nanocrystals. J. Chem. Phys., 151, 234106(2019).

    [148] N. H. Bonadeo et al. Coherent optical control of the quantum state of a single quantum dot. Science, 282, 1473-1476(1998).

    [149] T. H. Stievater et al. Rabi oscillations of excitons in single quantum dots. Phys. Rev. Lett., 87, 133603(2001).

    [150] T. Yoshie et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432, 200-203(2004).

    [151] E. B. Flagg et al. Resonantly driven coherent oscillations in a solid-state quantum emitter. Nat. Phys., 5, 203-207(2009).

    [152] M. A. Becker et al. Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals. Nano Lett., 18, 7546-7551(2018). https://doi.org/10.1021/acs.nanolett.8b03027

    [153] H. Utzat et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science, 363, 1068-1072(2019).

    [154] Y. Lv et al. Quantum interference in a single perovskite nanocrystal. Nano Lett., 19, 4442-4447(2019).

    [155] H. E. Grecco et al. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells. Microsc. Res. Tech., 65, 169-179(2004).

    [156] R. Zhang et al. Two-photon 3D FIONA of individual quantum dots in an aqueous environment. Nano Lett., 11, 4074-4078(2011).

    [157] M. D. Wissert et al. Quantum dots as single-photon sources: antibunching via two-photon excitation. Phys. Rev. B, 83, 113304(2011).

    [158] S. A. Blanton, M. A. Hines, P. Guyot-Sionnest. Photoluminescence wandering in single CdSe nanocrystals. Appl. Phys. Lett., 69, 3905-3907(1996).

    [159] K. T. Early, D. J. Nesbitt. Ultrafast laser studies of two-photon excited fluorescence intermittency in single CdSe/ZnS quantum dots. Nano Lett., 15, 7781-7787(2015).

    [160] A. Pramanik et al. Several orders-of-magnitude enhancement of multiphoton absorption property for CsPbX3 perovskite quantum dots by manipulating halide stoichiometry. J. Phys. Chem. C, 123, 5150-5156(2019). https://doi.org/10.1021/acs.jpcc.9b01108

    [161] T. C. He et al. Strong two-photon absorption of Mn-doped CsPbCl3 perovskite nanocrystals. Appl. Phys. Lett., 111, 211105(2017). https://doi.org/10.1063/1.5008437

    [162] Q. J. Han et al. Two-photon absorption and upconversion luminescence of colloidal CsPbX3 quantum dots. Opt. Mater., 75, 880-886(2018). https://doi.org/10.1016/j.optmat.2017.12.006

    [163] J. Chen et al. Size- and wavelength-dependent two-photon absorption cross-section of CsPbBr3 perovskite quantum dots. J. Phys. Chem. Lett., 8, 2316-2321(2017). https://doi.org/10.1021/acs.jpclett.7b00613

    [164] N. S. Makarov et al. Two-photon absorption in CdSe colloidal quantum dots compared to organic molecules. ACS Nano, 8, 12572-12586(2014).

    [165] Z. Cao et al. Two-photon excited photoluminescence of single perovskite nanocrystals. J. Chem. Phys., 151, 154201(2019).

    [166] H. Jayakumar et al. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett., 110, 135505(2013).

    [167] M. Mueller et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics, 8, 224-228(2014).

    [168] D. Huber et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett., 121, 033902(2018).

    [169] D. E. Gómez, M. Califano, P. Mulvaney. Optical properties of single semiconductor nanocrystals. Phys. Chem. Chem. Phys., 8, 4989-5011(2006).

    [170] N. Gaponik et al. Progress in the light emission of colloidal semiconductor nanocrystals. Small, 6, 1364-1378(2010).

    [171] J. Y. Kim et al. Colloidal quantum dot materials and devices: a quarter-century of advances. Adv. Mater., 25, 4986-5010(2013).

    [172] M. J. Fernée, P. Tamarat, B. Lounis. Spectroscopy of single nanocrystals. Chem. Soc. Rev., 43, 1311-1337(2014).

    [173] M. V. Kovalenko et al. Prospects of nanoscience with nanocrystals. ACS Nano, 9, 1012-1057(2015).

    [174] M. Nirmal et al. Observation of the “dark exciton” in CdSe quantum dots. Phys. Rev. Lett., 75, 3728-3731(1995).

    [175] X.-Y. Zhu, V. Podzorov. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett., 6, 4758-4761(2015).

    [176] F. Yan, H. V. Demir. LEDs using halide perovskite nanocrystal emitters. Nanoscale, 11, 11402(2019).

    [177] D. Gammon et al. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science, 273, 87-90(1996).

    CLP Journals

    [1] Tianju Zhang, Chaocheng Zhou, Jia Lin, Jun Wang, "Effects on the emission discrepancy between two-dimensional Sn-based and Pb-based perovskites," Chin. Opt. Lett. 20, 021602 (2022)

    [2] Xiao-Cong (Larry) Yuan, Anatoly Zayats, "Laser: sixty years of advancement," Adv. Photon. 2, 050101 (2020)

    [3] Wei Wang, Qinpeng Chen, Yifei Zhao, Yakun Le, Shengda Ye, Mang Wan, Xiongjian Huang, Guoping Dong, "PbS quantum dots and BaF2:Tm3+ nanocrystals co-doped glass for ultra-broadband near-infrared emission [Invited]," Chin. Opt. Lett. 20, 021603 (2022)

    Zengle Cao, Fengrui Hu, Chunfeng Zhang, Shining Zhu, Min Xiao, Xiaoyong Wang, "Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review," Adv. Photon. 2, 054001 (2020)
    Download Citation