• Photonics Research
  • Vol. 6, Issue 6, 485 (2018)
Hao Wang1、†, Hui Zhang1、4、†, Jiangli Dong1、2, Shiqi Hu1, Wenguo Zhu3, Wentao Qiu3, Huihui Lu1, Jianhui Yu1、3, Heyuan Guan1、3, Shecheng Gao2, Zhaohui Li1、5, Weiping Liu2, Miao He4, Jun Zhang1, Zhe Chen1、3, and Yunhan Luo1、2、3、*
Author Affiliations
  • 1Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
  • 2Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
  • 3Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
  • 4School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 5State Key Laboratory of Optoelectronic Materials and Technologies and School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
  • show less
    DOI: 10.1364/PRJ.6.000485 Cite this Article Set citation alerts
    Hao Wang, Hui Zhang, Jiangli Dong, Shiqi Hu, Wenguo Zhu, Wentao Qiu, Huihui Lu, Jianhui Yu, Heyuan Guan, Shecheng Gao, Zhaohui Li, Weiping Liu, Miao He, Jun Zhang, Zhe Chen, Yunhan Luo. Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer[J]. Photonics Research, 2018, 6(6): 485 Copy Citation Text show less
    References

    [1] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 5, 263-275(2013).

    [2] D. S. Tsai, K. K. Liu, D. H. Lien, M. L. Tsai, C. F. Kang, C. A. Lin, C. Lin, L. J. Li, J. H. He. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano, 7, 3905-3911(2013).

    [3] A. Li, J. Zhang, J. C. Qiu, Z. H. Zhao, C. Wang, C. J. Zhao, L. Hong. A novel aptameric biosensor based on the self-assembled DNA-WS2 nanosheet architecture. Talanta, 163, 78-84(2017).

    [4] F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam. Two-dimensional material nanophotonics. Nat. Photonics, 8, 899-907(2014).

    [5] S. Ratha, C. S. Rout. Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl. Mater. Interfaces, 5, 11427-11433(2013).

    [6] Y. C. Wang, J. Z. Ou, A. Chrimes, B. Carey, T. Daeneke, M. M. Alsaif, M. Mortazavi, S. Zhuiykov, N. Medhekar, M. Bhaskaran, J. R. Friend, M. S. Strano, K. Kalantar-Zadeh. Plasmon resonances of highly doped two-dimensional MoS2. Nano Lett., 15, 883-890(2015).

    [7] X. J. Cai, W. Gao, L. L. Zhang, M. Ma, T. Z. Liu, W. X. Du, Y. Y. Zheng, H. R. Chen, J. L. Shi. Enabling prussian blue with tunable localized surface plasmon resonances: simultaneously enhanced dual-mode imaging and tumor photothermal therapy. ACS Nano, 10, 11115-11126(2016).

    [8] W. J. Schutte, J. L. de Boer, F. Jellinek. Crystal structures of tungsten disulfide and diselenide. J. Solid State Chem., 70, 207-209(1987).

    [9] V. Q. Bui, T. T. Pham, D. A. Le, C. M. Thi, H. M. Le. A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: stability and electronic properties. J. Phys., 27, 305005(2015).

    [10] B. J. Carey, T. Daeneke, E. P. Nguyen, Y. C. Wang, J. Z. Ou, S. Zhuiykov, K. Kalantar-Zadeh. Two solvent grinding sonication method for the synthesis of two-dimensional tungsten disulphide flakes. Chem. Commun., 51, 3770-3773(2015).

    [11] A. S. Pawbake, R. Waykar, D. J. Late, S. R. Jadkar. Highly transparent wafer scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity sensing applications. ACS Appl. Mater. Interfaces, 8, 3359-3365(2016).

    [12] M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. Mcevoy, C. A. Wolden, G. S. Duesberg. Plasma assisted synthesis of WS2 for gas sensing applications. Chem. Phys. Lett., 615, 6-10(2014).

    [13] J. Chen, C. J. Gao, A. K. Mallik, H. D. Qiu. A WS2 nanosheet-based nanosensor for the ultrasensitive detection of small molecule–protein interaction via terminal protection of small molecule-linked DNA and Nt. BstNBI-assisted recycling amplification. J. Mater. Chem. B, 4, 5161-5166(2016).

    [14] H. Y. Guan, K. Xia, C. Y. Chen, Y. H. Luo, J. Y. Tang, H. H. Lu, J. H. Yu, J. Zhang, Y. C. Zhong, Z. Chen. Tungsten disulfide wrapped on micro fiber for enhanced humidity sensing. Opt. Mater. Express, 7, 1686-1696(2017).

    [15] E. E. Bedford, J. Spadavecchia, C. M. Pradier, F. X. Gu. Surface plasmon resonance biosensors incorporating gold nanoparticles. Macromol. Biosci., 12, 724-739(2012).

    [16] A. Shalabney, I. Abdulhalim. Sensitivity‐enhancement methods for surface plasmon sensors. Laser Photon. Rev., 5, 571-606(2011).

    [17] F. Zou, B. P. Wu, X. X. Wang, Y. Y. Chen, K. Koh, K. M. Wang, H. X. Chen. Signal amplification and dual recognition strategy for small-molecule detection by surface plasmon resonance based on calixarene crown ether-modified gold nanoparticles. Sens. Actuators B, 241, 160-167(2017).

    [18] L. Guo, J. A. Jackman, H. H. Yang, P. Chen, N. J. Cho, D. H. Kim. Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today, 10, 213-239(2015).

    [19] S. W. Zeng, X. Yu, W. C. Law, Y. Zhang, R. Hu, X. Q. Dinh, H. P. Ho, K. T. Yong. Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens. Actuators B, 176, 1128-1133(2013).

    [20] X. Cui, Y. Huang, J. Wang, L. Zhang, Y. Rong, W. Lai, T. Chen. A remarkable sensitivity enhancement in a gold nanoparticle-based lateral flow immunoassay for the detection of Escherichia coli O157:H7. RSC Adv., 5, 45092-45097(2015).

    [21] K. S. Lee, M. Lee, K. M. Byun, I. S. Lee. Surface plasmon resonance biosensing based on target-responsive mobility switch of magnetic nanoparticles under magnetic fields. J. Mater. Chem., 21, 5156-5162(2011).

    [22] A. Shalabaney, I. S. Abdulhalim. Surface plasmon sensor with enhanced sensitivity using top nano dielectric layer. J. Nanophoton., 3, 231-249(2009).

    [23] R. Tabassum, B. D. Gupta. Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers. IEEE J. Sel. Top. Quantum Electron., 23, 1-8(2016).

    [24] S. Singh, B. D. Gupta. Simulation of a surface plasmon resonance-based fiber-optic sensor for gas sensing in visible range using films of nanocomposites. Meas. Sci. Technol., 21, 115202(2010).

    [25] L. Touahir, J. Niedziółka-Jönsson, E. Galopin, R. Boukherroub, A. C. Gouget-Laemmel, L. Solomon, M. Petukhov, J. N. Chazalviel, F. Ozanam, S. Szunerits. Surface plasmon resonance on gold and silver films coated with thin layers of amorphous silicon–carbon alloys. Langmuir, 26, 6058-6065(2010).

    [26] X. Luo, T. Qiu, W. Lu, Z. Ni. Plasmons in graphene: recent progress and applications. Mater. Sci. Eng. R, 74, 351-376(2013).

    [27] W. Wei, P. Jin, N. Y. Zhu, W. Gui, N. Zhang, S. Q. Wang, N. Luo, G. L. Chen, C. J. Lan, Y. C. Huang. Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor. Plasmonics, 13, 483-491(2018).

    [28] P. Subramanian, F. Barkabouaifel, J. Bouckaert, N. Yamakawa, R. Boukherroub, S. Szunerits. Graphene-coated surface plasmon resonance interfaces for studying the interactions between bacteria and surfaces. ACS Appl. Mater. Interfaces, 6, 5422-5431(2014).

    [29] Q. L. Ouyang, S. W. Zeng, L. Jiang, L. Y. Hong, G. X. Xu, X. Q. Dinh, J. Qian, S. He, J. L. Qu, C. Philippe, K. T. Yong. Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep., 6, 28190(2016).

    [30] A. Berkdemir, H. R. Gutiérrez, A. R. Botelloméndez, N. Perealópez, A. L. Elías, C. Chia, B. Wang, V. H. Crespi, F. López-Urías, J. C. Charlier, H. Terrones, M. Terrones. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep., 3, 1755(2013).

    [31] N. F. Chiu, T. Y. Huang. Sensitivity and kinetic analysis of graphene oxide-based surface plasmon resonance biosensors. Sens. Actuators B, 197, 35-42(2014).

    [32] A. Zavabeti, J. Z. Ou, B. J. Carey, N. Syed, R. Orrell-Trigg, E. L. H. Mayes, C. L. Xu, O. Kavehei, A. P. O’Mullane, R. B. Kaner, K. Kalantar-Zadeh. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science, 358, 332-335(2017).

    [33] B. J. Carey, J. Z. Ou, R. M. Clark, K. J. Berean, A. Zavabeti, A. S. R. Chesman, S. P. Russo, D. W. M. Lau, Z. Q. Xu, Q. L. Bao, O. Kevehei, B. C. Gibson, M. D. Dickey, R. B. Kaner, T. Daeneke, K. Kalantar-Zadeh. Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals. Nat. Commun., 8, 14482(2017).

    CLP Journals

    [1] Gui-Shi Liu, Xin Xiong, Shiqi Hu, Weicheng Shi, Yaofei Chen, Wenguo Zhu, Huadan Zheng, Jianhui Yu, Nur Hidayah Azeman, Yunhan Luo, Zhe Chen. Photonic cavity enhanced high-performance surface plasmon resonance biosensor[J]. Photonics Research, 2020, 8(4): 448

    [2] Ruoqin Yan, Tao Wang, Xinzhao Yue, Huimin Wang, Yu-Hui Zhang, Peng Xu, Lu Wang, Yuandong Wang, Jinyan Zhang. Highly sensitive plasmonic nanorod hyperbolic metamaterial biosensor[J]. Photonics Research, 2022, 10(1): 84

    Hao Wang, Hui Zhang, Jiangli Dong, Shiqi Hu, Wenguo Zhu, Wentao Qiu, Huihui Lu, Jianhui Yu, Heyuan Guan, Shecheng Gao, Zhaohui Li, Weiping Liu, Miao He, Jun Zhang, Zhe Chen, Yunhan Luo. Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer[J]. Photonics Research, 2018, 6(6): 485
    Download Citation