• AEROSPACE SHANGHAI
  • Vol. 41, Issue 3, 143 (2024)
Ming LI*, Dezhe YUAN, Simin LI, and Shilong PAN
Author Affiliations
  • National Key Laboratory of Microwave Photonics,Nanjing University of Aeronautics and Astronautics,Nanjing210016,,China
  • show less
    DOI: 10.19328/j.cnki.2096-8655.2024.03.015 Cite this Article
    Ming LI, Dezhe YUAN, Simin LI, Shilong PAN. Microwave Photonic Radar Chip Based on Thin-film Lithium Niobate[J]. AEROSPACE SHANGHAI, 2024, 41(3): 143 Copy Citation Text show less
    References

    [1] V C CHEN, M MARTORELLA. Inverse synthetic aperture radar. SciTech Publishing, 55, 56(2014).

    [5] J CAPMANY, D NOVAK. Microwave photonics combines two worlds. Nature photonics, 1, 319(2007).

    [6] A WANG, X LUO et al. Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information. Optics express, 26, 20708-20717(2018).

    [7] Y ZHANG, X YE, Q GUO et al. Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation. Journal of Lightwave Technology, 35, 1821-1829(2017).

    [8] P ZHOU, R ZHANG, N LI et al. An RF-source-free microwave photonic radar with an optically injected semiconductor laser for high-resolution detection and imaging. https://arxiv.org/pdf/2106.06256

    [9] A MARUTA. All-optical digital-to-analog conversion using nonlinear optical loop mirrors. IEEE Photonics Technology Letters, 18, 703-705(2006).

    [10] T SAIDA, K OKAMOTO, K UCHIYAMA et al. Integrated optical digital-to-analogue converter and its application to pulse pattern recognition. Electronics Letters, 37, 1237-1238(2001).

    [11] J DING, D ZHU, Y YANG et al. Simultaneous angle-of-arrival and frequency measurement system based on microwave photonics. Journal of Lightwave Technology, 99, 1-10(2023).

    [12] P GHELFI, F LAGHEZZA, F SCOTTI et al. A fully photonics-based coherent radar system. Nature, 507, 341-345(2014).

    [13] A KHILO, S SPECTOR, M GREIN et al. Photonic ADC:Overcoming the bottleneck of electronic jitter. Optics Express, 20, 4454-4469(2012).

    [14] S PENG, S LI, X XUE et al. High-resolution W-band ISAR imaging system utilizing a logic-operation-based photonic digital-to-analog converter. Optics express, 26, 1978-1987(2018).

    [16] S WANG, H ZHANG, S JIA et al. Dual-band THz photonic pulses enabling synthetic mm-scale range resolution. IEEE Photonics Technology Letters, 30, 1760-1763(2018).

    [19] S LI, Z CUI, X YE et al. Chip-based microwave photonic radar for high resolution imaging. Laser & Photonics Reviews, 14, 1900239(2020).

    [20] S MELO, F FALCONI, P GHELFI et al. A silicon integrated photonics-based radar operating in multiple bands, 47-49(2020).

    [21] F FALCONI, S MELO, F SCOTTI et al. A combined radar & lidar system based on integrated photonics in silicon-on-insulator. Journal of Lightwave Technology, 39, 17-23(2020).

    [22] D ONORI, J AZAÑA. A broadly tunable noise radar transceiver on a silicon photonic chip, 1-3(2020).

    [23] G T REED, G MASHANOVICH, F Y GARDES et al. Silicon optical modulators. Nature photonics, 4, 518-526(2010).

    [26] F ARAB JUNEGHANI, M GHOLIPOUR VAZIMALI, J ZHAO et al. Thin‐film lithium niobate optical modulators with an extrapolated bandwidth of 170 GHz. Advanced Photonics Research, 4, 2200216(2023).

    [27] C WANG, M ZHANG, X CHEN et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [28] A N R AHMED, S NELAN, S SHI et al. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform. Optics letters, 45, 1112-1115(2020).

    [29] H FENG, K ZHANG, W SUN et al. Ultra-high-linearity integrated lithium niobate electro-optic modulators. Photonics Research, 10, 2366-2373(2022).

    [30] M HENRI. Processing of synthetic aperture radar images(2008).

    [74] P LOZANO, M MARTÍNEZ-SÁNCHEZ. Ionic liquid ion sources:suppression of electrochemical reactions using voltage alternation. Journal of Colloid and Interface Science, 280, 149-154(2004).

    [76] D G COURTNEY, H SHEA, K DANNENMAYER et al. Charge neutralization and direct thrust measure-ments from bipolar pairs of ionic-electrospray thrusters. Journal of Spacecraft and Rockets, 55, 54-65(2017).

    [78] F MIER-HICKS, P C LOZANO. Spacecraft-charging characteristics induced by the operation of electrospray thrusters. Journal of Propulsion and Power, 33, 456-467(2017).

    [79] C CUI, J WANG. Simulations of pure ionic electrospray thruster plume neutralization, 3613(2020).

    [80] B ZHANG, G CAI, B HE et al. Plume neutralization of an ionic liquid electrospray thruster:better insights from particle-in-cell modelling. Plasma Sources Science and Technology, 30, 125009(2021).