• Journal of Inorganic Materials
  • Vol. 37, Issue 1, 107 (2022)
Xiaoke XU*, Mingxue DENG, Qian LIU, Jianding YU, Zhenzhen ZHOU, Xiang ZHANG, and Huan HE
DOI: 10.15541/jim20210194 Cite this Article
Xiaoke XU, Mingxue DENG, Qian LIU, Jianding YU, Zhenzhen ZHOU, Xiang ZHANG, Huan HE. Advanced Multi-laser-beam Parallel Heating System for Rapid High Temperature Treatment[J]. Journal of Inorganic Materials, 2022, 37(1): 107 Copy Citation Text show less
References

[1] F XU Y, L ELCORO, D SONG Z et al. High-throughput calculations of magnetic topological materials. Nature, 586, 702-707(2020). https://doi.org/10.1038/s41586-020-2837-0

[2] H SHEN Z, J WANG J, H LIN Y et al. High-throughput phase-field design of high-energy-density polymer nanocomposites. Advanced Materials, 30(2018).

[3] T GAN L, R YANG, R TRAYLOR et al. High-throughput growth of microscale gold bicrystals for single-grain-boundary studies. Advanced Materials, 31(2019).

[4] M SEOL, H LEE M, H KIM et al. High-throughput growth of wafer-scale monolayer transition metal dichalcogenide via vertical ostwald ripening. Advanced Materials, 32(2020).

[5] K JIANG J, G SHEA, P RASTOGI et al. Continuous high- throughput fabrication of architected micromaterials via in-air photopolymerization. Advanced Materials, 33(2021).

[6] H LI J, P DU P, R LI S et al. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Advanced Functional Materials, 29(2019).

[7] M ZHANG Z, A LINDLEY S, D GUEVARRA et al. Fermi level engineering of passivation and electron transport materials for p-type CuBi2O4 employing a high-throughput methodology. Advanced Functional Materials, 30(2020).

[8] H LIN B, L HEDRICK J, H PARK N et al. Programmable high-throughput platform for the rapid and scalable synthesis of polyester and polycarbonate libraries. Journal of the American Chemical Society, 141, 8921-8927(2019). https://pubs.acs.org/doi/10.1021/jacs.9b02450

[9] C DAHL J, Z WANG X, X HUANG et al. Elucidating the weakly reversible Cs-Pb-Br perovskite nanocrystal reaction network with high-throughput maps and transformations. Journal of the American Chemical Society, 142, 11915-11926(2020). https://pubs.acs.org/doi/10.1021/jacs.0c04997

[10] Y WANG H, Z JING, L LIU H et al. A high-throughput assessment of the adsorption capacity and Li-ion diffusion dynamics in Mo-based ordered double-transition-metal MXenes as anode materials for fast-charging LIBs. Nanoscale, 12, 24510-24526(2020). http://xlink.rsc.org/?DOI=D0NR05828A

[11] B MENG Q, L ZHOU X, H LI J et al. High-throughput laser fabrication of Ti-6Al-4V alloy: Part I. Numerical investigation of dynamic behavior in molten Pool. Journal of Manufacturing Processes, 59, 509-522(2020). https://linkinghub.elsevier.com/retrieve/pii/S1526612520306769

[12] M REN Y, C ZHANG Y, Y DING Y et al. Computational fluid dynamics-based in-situ sensor analytics of direct metal laser solidification process using machine learning. Computers & Chemical Engineering, 143(2020).

[13] D HOLDER, R WEBER, C ROCKER et al. High-quality high-throughput silicon laser milling using a 1 kW sub-picosecond laser. Optics Letters, 46, 384-387(2021). https://www.osapublishing.org/abstract.cfm?URI=ol-46-2-384

[14] S SHIN, G HUR J, K PARK J et al. Thermal damage free material processing using femtosecond laser pulses for fabricating fine metal masks: influences of laser fluence and pulse repetition rate on processing quality. Optics and Laser Technology, 134(2021).

[15] Y GONG X, C YABANSU Y, C COLLINS P et al. Evaluation of Ti-Mn alloys for additive manufacturing using high-throughput experimental assays and Gaussian process regression. Materials, 20(2020).

[16] G MINCUZZI, A REBIERE, M FAUCON et al. Beam engineering strategies for high throughput, precise, micro-cutting by 100 W, femtosecond lasers. Journal of Laser Applications, 32(2020).

[17] D HUH, W KIM, K KIM et al. Enhancing light conversion efficiency of YAG:Ce phosphor substrate using nanoimprinted functional structures. Nanotechnology, 31(2020).

[18] YW XU, J CHEN, H ZHANG et al. White-light-emitting flexible display devices based on double network hydrogels crosslinked by YAG:Ce phosphors. Journal of Materials Chemistry C, 8, 247-252(2020). http://xlink.rsc.org/?DOI=C9TC05311E

[19] V TUCUREANU, C ROMANITAN, A TUDOR I et al. Effect of process parameters on YAG:Ce phosphor properties obtained by co-precipitation method. Ceramics International, 46, 23802-23812(2020). https://linkinghub.elsevier.com/retrieve/pii/S0272884220318150

[20] N CHUNG D, N HIEU D, T THAO T et al. Synthesis and characterization of Ce-doped Y3Al5O12 (YAG:Ce) nanopowders used for solid-state lighting. Journal of Nanomaterials(2014).

Xiaoke XU, Mingxue DENG, Qian LIU, Jianding YU, Zhenzhen ZHOU, Xiang ZHANG, Huan HE. Advanced Multi-laser-beam Parallel Heating System for Rapid High Temperature Treatment[J]. Journal of Inorganic Materials, 2022, 37(1): 107
Download Citation