• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 2, 2150003 (2021)
Liang Hong, Jia Zhang, Junxian Geng, Junle Qu, and Liwei Liu*
Author Affiliations
  • Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University, Shenzhen 518060, P. R. China
  • show less
    DOI: 10.1142/s1793545821500036 Cite this Article
    Liang Hong, Jia Zhang, Junxian Geng, Junle Qu, Liwei Liu. Development of a hydrogen peroxide-responsive and oxygen-carrying nanoemulsion for photodynamic therapy against hypoxic tumors using phase inversion composition method[J]. Journal of Innovative Optical Health Sciences, 2021, 14(2): 2150003 Copy Citation Text show less
    References

    [1] J. Tian, B. Huang, M. H. Nawaz, W. Zhang, "Recent advances of multi-dimensional porphyrinbased functional materials in photodynamic therapy," Coord. Chem. Rev. 420, 213410 (2020).

    [2] H. Chen, C. He, T. Chen, X. Xue, "New strategy for precise cancer therapy: tumor-specific delivery of mitochondria-targeting photodynamic therapy agents and in situ O2-generation in hypoxic tumors," Biomater. Sci. 8(14), 3994–4002 (2020).

    [3] M. Hockel, P. Vaupel, "Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects," JNCI-J. Natl. Cancer Inst. 93(4), 266–276 (2001).

    [4] X. Li, J. Wang, R. Cui, D. Xu, L. Zhu, Z. Li, H. Chen, Y. Gao, L. Jia, "Hypoxia/pH dual-responsive nitroimidazole-modified chitosan/rose bengal derivative nanoparticles for enhanced photodynamic anticancer therapy," Dyes Pigment. 179, 108395 (2020).

    [5] J. M. Brown, W. R. Wilson, "Exploiting tumour hypoxia in cancer treatment," Nat. Rev. Cancer 4(6), 437–447 (2004).

    [6] A. L. Harris, "Hypoxia — a key regulatory factor in tumour growth," Nat. Rev. Cancer 2(1), 38–47 (2002).

    [7] B. Yang, Z. Dai, G. Zhang, Z. Hu, X. Yao, S. Wang, Q. Liu, X. Zheng, "Ultrasmall ternary FePtMn nanocrystals with acidity-triggered dual-ions release and hypoxia relief for multimodal synergistic chemodynamic/ photodynamic/photothermalcancer therapy," Adv. Healthc. Mater. 9(21), 1901634 (2020).

    [8] X. Liu, G. Li, M. Xie, S. Guo, W. Zhao, F. Li, S. Liu, Q. Zhao, "Rational design of type I photosensitizers based on Ru(II) complexes for effective photodynamic therapy under hypoxia," Dalton Trans. 49 (32), 11192–11200 (2020).

    [9] J. Chen, H. Luo, Y. Liu, W. Zhang, H. Li, T. Luo, K. Zhang, Y. Zhao, J. Liu, "Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer," ACS Nano 11(12), 12849–12862 (2017).

    [10] Y. Cheng, H. Cheng, C. Jiang, X. Qiu, K. Wang, W. Huan, A. Yuan, J. Wu, Y. Hu, "Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy," Nat. Commun. 6, 8785 (2015).

    [11] B. Pucelik, A. Su?ek, A. Barzowska, J. M. Dabrowski, "Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer," Cancer Lett. 492, 116–135 (2020).

    [12] N. Yang, W. Xiao, X. Song, W. Wang, X. Dong, "Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy," Nano-Micro Lett. 12(1), 15 (2020).

    [13] Q. He, H. Hu, Q. Zhang, T. Wu, Y. Zhang, K. Li, C. Shi, "Ultra-dispersed biomimetic nanoplatform fabricated by controlled etching agglomerated MnO2 for enhanced photodynamic therapy and immune activation," Chem. Eng. J. 397, 125478 (2020).

    [14] Q. Chen, L. Feng, J. Liu, W. Zhu, Z. Dong, Y. Wu, Z. Liu, "Intelligent albumin–MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy," Adv. Mater. 28(33), 7129–7136 (2016).

    [15] B. Huang, S. Chen, W. Pei, Y. Xu, Z. Jiang, C. Niu, L. Wang, "Oxygen-sufficient nanoplatform for chemo-sonodynamic therapy of hypoxic tumors," Front. Chem. 8, 358 (2020).

    [16] X. Li, H. Yu, Y. Huang, Y. Chen, J. Wang, L. Xu, F. Zhang, Y. Zhuge, X. Zou, "Preparation of microspheres encapsulating sorafenib and catalase and their application in rabbit VX2 liver tumor," Biomed. Pharmacother. 129, 110512 (2020).

    [17] X. Liu, Q. Wang, H. Zhao, L. Zhang, Y. Su, Y. Lv, "BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics," Analyst 137(19), 4552–4558 (2012).

    [18] X. Cheng, L. He, J. Xu, Q. Fang, L. Yang, Y. Xue, X. Wang, R. Tang, "Oxygen-producing catalasebased prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy," Acta Biomater. 112, 234–249 (2020).

    [19] Y. Fan, S. Guan, W. Fang, P. Li, B. Hu, C. Shan, W. Wu, J. Cao, B. Cheng, W. Liu, Y. Tang, "A smart tumor-microenvironment responsive nanoprobe for highly selective and efficient combination therapy," Inorg. Chem. Front. 6(12), 3562–3568 (2019).

    [20] L. Deng, D. Sheng, M. Liu, L. Yang, H. Ran, P. Li, X. Cai, Y. Sun, Z. Wang, "A near-infrared laser and H2O2 activated bio-nanoreactor for enhanced photodynamic therapy of hypoxic tumors," Biomater. Sci. 8(3), 858–870 (2020).

    [21] M. Li, Y. Shao, J. H. Kim, Z. Pu, X. Zhao, H. Huang, T. Xiong, Y. Kang, G. Li, K. Shao, J. Fan, J. W. Foley, J. S. Kim, X. Peng, "Unimolecular photodynamic O2-economizer to overcome hypoxia resistance in phototherapeutics," J. Am. Chem. Soc. 142(11), 5380–5388 (2020).

    [22] Z. Zhou, B. Zhang, H. Wang, A. Yuan, Y. Hu, J. Wu, "Two-stage oxygen delivery for enhanced radiotherapy by perfluorocarbon nanoparticles," Theranostics 8(18), 4898–4911 (2018).

    [23] X. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, "Innovative strategies for hypoxic-tumor photodynamic therapy," Angew. Chem.-Int. Edit. 57(36), 11522–11531 (2018).

    [24] X. Shi, Q. Zhan, X. Yan, J. Zhou, L. Zhou, S. Wei, "Oxyhemoglobin nano-recruiter preparation and its application in biomimetic red blood cells to relieve tumor hypoxia and enhance photodynamic therapy activity," J. Mat. Chem. B 8(3), 534–545 (2020).

    [25] P. W. Buehler, Y. Zhou, P. Cabrales, Y. Jia, G. Sun, D. R. Harris, A. G. Tsai, M. Intaglietta, A. F. Palmer, "Synthesis, biophysical properties and pharmacokinetics of ultrahigh molecular weight tense and relaxed state polymerized bovine hemoglobins," Biomaterials 31(13), 3723–3735 (2010).

    [26] L. Yao, L. Feng, D. Tao, H. Tao, X. Zhong, C. Liang, Y. Zhu, B. Hu, Z. Liu, Y. Zheng, "Perfluorocarbon nanodroplets stabilized with cisplatin- prodrug-constructed lipids enable efficient tumor oxygenation and chemo-radiotherapy of cancer," Nanoscale 12(27), 14764–14774 (2020).

    [27] K. de Oliveira Gon?alves, D. P. Vieira, L. C. Courrol, "Synthesis and characterization of aminolevulinic acid gold nanoparticles: Photo and sonosensitizer agent for atherosclerosis," J. Lumines. 197, 317–323 (2018).

    [28] L. Hong, C. L. Zhou, F. P. Chen, D. Han, C. Y. Wang, J. X. Li, Z. Chi, C. G. Liu, "Development of a carboxymethyl chitosan functionalized nanoemulsion formulation for increasing aqueous solubility, stability and skin permeability of astaxanthin using low-energy method," J. Microencapsul. 34(8), 707– 721 (2017).

    [29] A. K. Das, P. K. Nanda, S. Bandyopadhyay, R. Banerjee, S. Biswas, D. J. McClements, "Application of nanoemulsion-based approaches for improving the quality and safety of muscle foods: A comprehensive review," Compr. Rev. Food. Sci. Food Saf. 19(5), 2677–2700 (2020).

    [30] D. J. McClements, "Edible nanoemulsions: fabrication, properties, and functional performance," Soft Matter 7(6), 2297–2316 (2011).

    [31] F. Hansali, M. Wu, D. Bendedouch, E. Marie, "n- Butyl cyanoacrylate miniemulsion polymerization via the phase inversion composition method," Colloid Surf. A-Physicochem. Eng. Asp. 393, 133–138 (2012).

    [32] Q. Chen, J. Chen, C. Liang, L. Feng, Z. Dong, X. Song, G. Song, Z. Liu, "Drug-induced co-assembly of albumin/catalase as smart nano-theranostics for deep intra-tumoral penetration, hypoxia relieve, and synergistic combination therapy," J. Control. Release 263, 79–89 (2017).

    [33] G. Song, Y. Chen, C. Liang, X. Yi, J. Liu, X. Sun, S. Shen, K. Yang, Z. Liu, "Catalase-loaded TaOx nanoshells as bio-nanoreactors combining high-Z element and enzyme delivery for enhancing radiotherapy," Adv. Mater. 28(33), 7143–7148 (2016).

    [34] X. Tan, S. Luo, D. Wang, Y. Su, T. Cheng, C. Shi, "A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties," Biomaterials 33(7), 2230–2239 (2012).

    [35] M. E. Davis, Z. Chen, D. M. Shin, "Nanoparticle therapeutics: an emerging treatment modality for cancer," Nat. Rev. Drug Discov. 7(9), 771–782 (2008).

    [36] F. Alexis, E. Pridgen, L. K. Molnar, O. C. Farokhzad, "Factors affecting the clearance and biodistribution of polymeric nanoparticles," Mol. Pharm. 5(4), 505–515 (2008).

    [37] P. Zhang, S. R. Zhao, J. X. Li, L. Hong, M. A. Raja, L. J. Yu, C. G. Liu, "Nanoparticles based on phenylalanine ethyl ester-alginate conjugate as vitamin B2 delivery system," J. Biomater. Appl. 31(1), 13–22 (2016).

    Liang Hong, Jia Zhang, Junxian Geng, Junle Qu, Liwei Liu. Development of a hydrogen peroxide-responsive and oxygen-carrying nanoemulsion for photodynamic therapy against hypoxic tumors using phase inversion composition method[J]. Journal of Innovative Optical Health Sciences, 2021, 14(2): 2150003
    Download Citation