• Chinese Optics Letters
  • Vol. 20, Issue 1, 011405 (2022)
Song Zhang, Man Jiang*, Can Li, Rongtao Su, Pu Zhou, and Zongfu Jiang
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202220.011405 Cite this Article Set citation alerts
    Song Zhang, Man Jiang, Can Li, Rongtao Su, Pu Zhou, Zongfu Jiang. High-power broadband supercontinuum generation through a simple narrow-bandwidth FBGs-based fiber laser cavity[J]. Chinese Optics Letters, 2022, 20(1): 011405 Copy Citation Text show less
    References

    [1] J. C. Travers. Blue extension of optical fibre supercontinuum generation. J. Opt., 12, 113001(2010).

    [2] C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, O. Bang. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Opt. Lett., 43, 999(2018).

    [3] J. Park, D. J. Brady, G. Zheng, L. Tian, L. Gao. Review of bio-optical imaging systems with a high space-bandwidth product. Adv. Photon., 3, 044001(2021).

    [4] N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, O. Bang. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci. Appl., 8, 11(2019).

    [5] T. Hakala, J. Suomalainen, S. Kaasalainen, Y. Chen. Full waveform hyperspectral LiDAR for terrestrial laser scanning. Opt. Express, 20, 7119(2012).

    [6] C. J. Zarobila, J. J. Butler, H. J. Patrick, X. Xiong, X. Gu. Supercontinuum fiber laser source for reflectance calibrations in remote sensing. Proc. SPIE, 7807, 78070B(2010).

    [7] V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, G. Kalinchenko, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. A. Zadnik, A. S. Szalkowski, G. J. Boer. Field trial of active remote sensing using a high-power short-wave infrared supercontinuum laser. Appl. Opt., 52, 6813(2013).

    [8] H. Zhang, F. Li, R. Liao, K. Dong, Y. Li, H. Lin, J. Wang, F. Jing. Supercontinuum generation of 314.7 W ranging from 390 to 2400 nm by tapered photonic crystal fiber. Opt. Lett., 46, 1429(2021).

    [9] Z. Li, Z. Jia, C. Yao, Z. Zhao, N. Li, M. Hu, Y. Ohishi, W. Qin, G. Qin. 22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers. Opt. Lett., 45, 1882(2020).

    [10] X. Wang, C. Yao, P. Li, Y. Wu, L. Yang, G. Ren, C. Wang. All-fiber high-power supercontinuum laser source over 3.5 microm based on a germania-core fiber. Opt. Lett., 46, 3103(2021).

    [11] J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, J. R. Taylor. Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser. Opt. Express, 16, 14435(2008).

    [12] Y. Zhu, Z. Zheng, X. Ge, G. Du, S. Ruan, C. Guo, P. Yan, P. Hua, L. Xia, Q. Lü. High-power, ultra-broadband supercontinuum source based upon 1/1.5 µm dual-band pumping. Chin. Opt. Lett., 19, 041403(2021).

    [13] Y. Tao, S.-P. Chen. All-fiber high-power linearly polarized supercontinuum generation from polarization-maintaining photonic crystal fibers. High Power Laser Sci. Eng., 7, e28(2019).

    [14] C. Huang, M. Liao, W. Bi, X. Li, L. Hu, L. Zhang, L. Wang, G. Qin, T. Xue, D. Chen, W. Gao. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion. Photon. Res., 6, 601(2018).

    [15] X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, D. Shen. High average power, strictly all-fiber supercontinuum source with good beam quality. Opt. Lett., 36, 2659(2011).

    [16] P. H. Pioger, V. Couderc, P. Leproux, P. A. Champert. High spectral power density supercontinuum generation in a nonlinear fiber amplifier. Opt. Express, 15, 11358(2007).

    [17] Q. Hao, H. Zeng. Cascaded four-wave mixing in nonlinear Yb-doped fiber amplifiers. IEEE J. Sel. Top. Quantum Electron., 20, 345(2014).

    [18] R. Song, J. Hou, S. P. Chen, W. Q. Yang, T. Liu, Q. S. Lu. Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts. Laser Phys. Lett., 10, 015401(2013).

    [19] R. Ma, Y. J. Rao, W. L. Zhang, X. Zeng, X. Dong, H. Wu, Z. N. Wang, X. P. Zeng. Backward supercontinuum generation excited by random lasing. IEEE J. Sel. Top. Quantum Electron., 24, 0901105(2018).

    [20] R. Ma, W. L. Zhang, J. Y. Guo, Y. J. Rao. Decoherence of fiber supercontinuum light source for speckle-free imaging. Opt. Express, 26, 26758(2018).

    [21] L. Chen, R. Song, C. Lei, W. Yang, J. Hou. Random fiber laser directly generates visible to near-infrared supercontinuum. Opt. Express, 27, 29781(2019).

    [22] J. He, R. Song, W. Yang, J. Hou. High-efficiency ultra-compact near-infrared supercontinuum generated in an ultrashort cavity configuration. Opt. Express, 29, 19140(2021).

    [23] H. Xu, M. Jiang, P. Zhou, G. Zhao, X. Gu. Elimination of self-mode-locking pulses in high-power continuous-wave Yb-doped fiber lasers with external feedback. Appl. Opt., 56, 9079(2017).

    [24] W. Liu, P. Ma, P. Zhou, Z. Jiang. Optimization for the fiber laser source through its temporal and spectral characteristics. Proc. SPIE, 10436, 104360O(2017).

    [25] V. Bock, A. Liem, T. Schreiber, R. Eberhardt, A. Tünnermann. Explanation of stimulated Raman scattering in high power fiber systems. Proc. SPIE, 10512, 105121F(2018).

    [26] A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, S. A. Babin. Generation dynamics of the narrowband Yb-doped fiber laser. Opt. Express, 21, 8177(2013).

    [27] W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, Z. Jiang. General analysis of SRS-limited high-power fiber lasers and design strategy. Opt. Express, 24, 26715(2016).

    [28] J. Wang, J. Hu, L. Zhang, X. Gu, J. Chen, Y. Feng. A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm. Opt. Express, 20, 28373(2012).

    [29] L. Huang, P. Ma, R. Tao, C. Shi, X. Wang, P. Zhou. Experimental investigation of thermal effects and PCT on FBGs-based linearly polarized fiber laser performance. Opt. Express, 23, 10506(2015).

    [30] G. Agrawal. Nonlinear Fiber Optics(2013).

    [31] M. Salhi, A. Hideur, T. Chartier, M. Brunel, G. Martel, C. Ozkul, F. Sanchez. Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser. Opt. Lett., 27, 1294(2002).

    [32] Y. Tang, J. Xu. High-power pulsed thulium fiber oscillator modulated by stimulated Brillouin scattering. Appl. Phys. Lett., 104, 011103(2014).

    [33] J. Xu, J. Wu, J. Ye, J. Song, B. Yao, H. Zhang, J. Leng, W. Zhang, P. Zhou, Y. Rao. Optical rogue wave in random fiber laser. Photon. Res., 8, 1(2019).

    Data from CrossRef

    [1] Li Wang, Hanwei Zhang, Xiaoming Xi, Peng Wang, Dan Zhang, Baolai Yang, Chen Shi, Xiaolin Wang, Xiaojun Xu. Simple method for high average power supercontinuum generation based on Raman mode locking in a quasi-CW fiber laser oscillator. Optics Letters, 47, 5809(2022).

    Song Zhang, Man Jiang, Can Li, Rongtao Su, Pu Zhou, Zongfu Jiang. High-power broadband supercontinuum generation through a simple narrow-bandwidth FBGs-based fiber laser cavity[J]. Chinese Optics Letters, 2022, 20(1): 011405
    Download Citation