• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 231405 (2020)
Zhiwei Chen1, Chengyuan Ma1, Bo Chen1、2、*, Caiwang Tan1、2, and Xiaoguo Song1、2
Author Affiliations
  • 1Shandong Key Laboratory of Special Welding Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong 264209, China
  • 2State Key Laboratory of Advanced Welding and Connection, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • show less
    DOI: 10.3788/LOP57.231405 Cite this Article Set citation alerts
    Zhiwei Chen, Chengyuan Ma, Bo Chen, Caiwang Tan, Xiaoguo Song. Microstructure and Properties of Medium-Thick Stainless Steel by Laser-MIG Hybrid Welding[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231405 Copy Citation Text show less
    Schematic diagram of the welding process
    Fig. 1. Schematic diagram of the welding process
    Schematic diagram of bevel size
    Fig. 2. Schematic diagram of bevel size
    Schematic of the tensile specimen. (a) Selection location of tensile sample; (b) size of tensile sample
    Fig. 3. Schematic of the tensile specimen. (a) Selection location of tensile sample; (b) size of tensile sample
    Cross-section morphology of welds with different combinations. (a) Sample A1; (b) sample A2; (c) sample A3; (d) sample A4
    Fig. 4. Cross-section morphology of welds with different combinations. (a) Sample A1; (b) sample A2; (c) sample A3; (d) sample A4
    Microstructure of 316L austenitic stainless steel
    Fig. 5. Microstructure of 316L austenitic stainless steel
    Filling weld structure. (a) (d) HAZ of A1 and A3; (b) (e) weld center of A1 and A3; (c) (f) zones of A and B
    Fig. 6. Filling weld structure. (a) (d) HAZ of A1 and A3; (b) (e) weld center of A1 and A3; (c) (f) zones of A and B
    Underlying weld structure. (a) (d) HAZ of A1 and A2; (b) (e) weld center of A1 and A2; (c) (f) zones of C and D
    Fig. 7. Underlying weld structure. (a) (d) HAZ of A1 and A2; (b) (e) weld center of A1 and A2; (c) (f) zones of C and D
    Schematic diagram of fracture locations of tensile test specimens
    Fig. 8. Schematic diagram of fracture locations of tensile test specimens
    Stress-strain curves at different positions of each sample joint. (a) Filling weld; (b) underlying weld
    Fig. 9. Stress-strain curves at different positions of each sample joint. (a) Filling weld; (b) underlying weld
    Fracture morphology of tensile samples. (a) (b) Upper layer fracture of A1 and its micro area; (c) (d) upper layer fracture of A3 and its micro area; (e) (f) lower layer fracture of A1 and its micro area; (g) (h) lower layer fracture of A2 and its micro area
    Fig. 10. Fracture morphology of tensile samples. (a) (b) Upper layer fracture of A1 and its micro area; (c) (d) upper layer fracture of A3 and its micro area; (e) (f) lower layer fracture of A1 and its micro area; (g) (h) lower layer fracture of A2 and its micro area
    Microhardness of different parts of the weld joint. (a) Filling layer; (b) underlying layer
    Fig. 11. Microhardness of different parts of the weld joint. (a) Filling layer; (b) underlying layer
    MaterialCCrNiMoMnPSSi
    316L0.0216.829.841.781.520.030.030.50
    ER316L0.0318.9112.032.012.020.020.010.56
    Table 1. Chemical composition (mass fraction) of 316L austenitic stainless steel and ER316L stainless steel filler wire unit: %
    SamplePositionLaser power /WCurrent /AWelding speed /(m·min-1)
    A1Root pass35001500.8
    Filler or cover pass15002500.8
    A2Root pass400000.8
    Filler or cover pass15002500.8
    A3Root pass35001500.8
    Filler or cover pass02800.6
    A4Root pass400000.8
    Filler or cover pass02800.6
    Table 2. Welding process parameters
    ParameterLocationA1A2A3A4
    ULTensile strength /MPa637.01619.27554.52551.57
    Elongation /%25.1322.7113.2911.35
    BLTensile strength /MPa648.58661.98625.63406.48
    Elongation /%29.0734.9823.8411.57
    BMTensile strength /MPa678.92
    Elongation /%47.50
    Table 3. Tensile strength and elongation of different samples
    Zhiwei Chen, Chengyuan Ma, Bo Chen, Caiwang Tan, Xiaoguo Song. Microstructure and Properties of Medium-Thick Stainless Steel by Laser-MIG Hybrid Welding[J]. Laser & Optoelectronics Progress, 2020, 57(23): 231405
    Download Citation