• Optics and Precision Engineering
  • Vol. 31, Issue 22, 3318 (2023)
Yongjian MAO1, Minghai LI1, Yingbo HE2,*, Xia YAN1..., Qian LIU1, Mingxiang LING1 and Tian KANG1|Show fewer author(s)
Author Affiliations
  • 1Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang62999, China
  • 2China Academy of Engineering Physics, Mianyang61999, China
  • show less
    DOI: 10.37188/OPE.20233122.3318 Cite this Article
    Yongjian MAO, Minghai LI, Yingbo HE, Xia YAN, Qian LIU, Mingxiang LING, Tian KANG. Development of a piezoelectric-hydraulic series hybrid vibration exciter undergoing dynamic overloads[J]. Optics and Precision Engineering, 2023, 31(22): 3318 Copy Citation Text show less
    References

    [1] 朱长春, 周桐, 胡绍全, 等. 典型结构振动过载综合环境动态响应实验研究[J]. 振动工程学报, 2014, 27(2): 193-200. doi: 10.3969/j.issn.1004-4523.2014.02.006ZHUC C, ZHOUT, HUS Q, et al. Experimental research on the dynamical response feature of a typical structure under vibration and over loading compound environment[J]. Journal of Vibration Engineering, 2014, 27(2): 193-200. (in Chinese). doi: 10.3969/j.issn.1004-4523.2014.02.006

    [2] 周桐, 张志旭, 任万发, 等. 典型结构振动-加速度综合环境试验研究[J]. 装备环境工程, 2015, 12(5): 50-55. doi: 10.7643/issn.1672-9242.2015.05.008ZHOUT, ZHANGZ X, RENW F, et al. Experimental research on typical structure under vibration-acceleration combined environment[J]. Equipment Environmental Engineering, 2015, 12(5): 50-55.(in Chinese). doi: 10.7643/issn.1672-9242.2015.05.008

    [3] P H ADAMS, R L AULT, D L FULTON. Sandia National Laboratories 8.8-Metre(29-Foot) and 10.7-Metre (35-Foot) Centrifuge Facilities(1980).

    [4] R A JEPSEN, E F ROMERO. Testing in a combined vibration and acceleration environment(2005).

    [5] D VANGOETHEM, R JEPSEN, E ROMERO. Vibrafuge: Re-Entry and Launch Test Simulation in a Combined Linear Acceleration and Vibration Environment, 1318(2006).

    [6] P RHIEN. New weapons testing produces richer data, saves cost(2021). https://www.sandia.gov/labnews /2021/07/16/new-weapons-testing-produces-richer-data-saves-cost/

    [7] T DESHLER. Labs accomplishments 2020. https://www.sandia.gov/news/publications/labs-accomplishments/issue/lab-accomplishments-2020/

    [8] 吴建国, 李海波, 张琪, 等. 液浮陀螺仪过载振动复合环境试验[J]. 中国惯性技术学报, 2015, 23(6): 840-844. doi: 10.13695/j.cnki.12-1222/o3.2015.06.025WUJ G, LIH B, ZHANGQ, et al. Environment effect and adaptability test on spaceflight fluid floating gyro under overload+vibration[J]. Journal of Chinese Inertial Technology, 2015, 23(6): 840-844.(in Chinese). doi: 10.13695/j.cnki.12-1222/o3.2015.06.025

    [9] 何阳, 蒋春梅, 张建全. 振动离心复合试验系统发展概述[J]. 装备环境工程, 2016, 13(6): 95-103. doi: 10.7643/issn.1672-9242.2016.06.017HEY, JIANGC M, ZHANGJ Q. A survey of combined acceleration and vibration environment simulator[J]. Equipment Environmental Engineering, 2016, 13(6): 95-103.(in Chinese). doi: 10.7643/issn.1672-9242.2016.06.017

    [10] 董龙雷, 闫桂荣, 朱先辉, 等. 离心力场中振动台与柔性梁的运动耦合分析[J]. 机械工程学报, 2001, 37(6): 29-33. doi: 10.3321/j.issn:0577-6686.2001.06.007DONGL L, YANG R, ZHUX H, et al. Movement coupling analysis of vibrator and flexible base in compound environment[J]. Chinese Journal of Mechanical Engineering, 2001, 37(6): 29-33.(in Chinese). doi: 10.3321/j.issn:0577-6686.2001.06.007

    [11] 董龙雷, 闫桂荣, 余建军, 等. 离心机振动台复合环境实验系统的隔振研究[J]. 应用力学学报, 2002, 19(1): 23-26. doi: 10.3969/j.issn.1000-4939.2002.01.007DONGL L, YANG R, YUJ J, et al. Vibration isolation of the combined environments test system with centrifuge and vibration table[J]. Chinese Journal of Applied Mechanics, 2002, 19(1): 23-26.(in Chinese). doi: 10.3969/j.issn.1000-4939.2002.01.007

    [12] 徐冠华. 动力学综合环境试验若干理论及技术问题的研究[D]. 杭州: 浙江大学, 2014.XUG H. Research on Some Theoretical and Technical Problems of Dynamic Comprehensive Environmental Testing[D]. Hangzhou: Zhejiang University, 2014. (in Chinese)

    [13] 刘占芳, 郭小炜. 双自由度离心振动系统的动力耦合分析[J]. 振动工程学报, 2013, 26(3): 411-417. doi: 10.3969/j.issn.1004-4523.2013.03.015LIUZ F, GUOX W. Dynamic coupled analysis on centrifugal vibration system with two degrees of freedom[J]. Journal of Vibration Engineering, 2013, 26(3): 411-417.(in Chinese). doi: 10.3969/j.issn.1004-4523.2013.03.015

    [14] 欧峰, 陈颖, 陈洪, 等. 基于离心机平台的复合环境试验系统综述[J]. 装备环境工程, 2015, 12(5): 28-33. doi: 10.7643/issn.1672-9242.2015.05.004OU F, CHENY, CHENH, et al. Review of the compound environment test system based on centrifuge platform[J]. Equipment Environmental Engineering, 2015, 12(5): 28-33.(in Chinese). doi: 10.7643/issn.1672-9242.2015.05.004

    [15] 谢海波, 卢俊廷, 杜泽锋, 等. 离心机振动台设计与控制策略研究[J]. 液压与气动, 2019(5): 81-86. doi: 10.11832/j.issn.1000-4858.2019.05.012XIEH B, LUJ T, DUZ F, et al. Design on centrifuge shaker and research on control strategy[J]. Chinese Hydraulics & Pneumatics, 2019(5): 81-86.(in Chinese). doi: 10.11832/j.issn.1000-4858.2019.05.012

    [16] 陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887-1894.CHENY M, HANC, LINGD S, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887-1894.(in Chinese)

    [17] 吴志刚, 陈敏. 压电精密驱动柔性微夹钳设计[J]. 光学 精密工程, 2020, 28(2): 398-404.WUZ G, CHENM. Design of flexure micro-gripper precision-driven by piezoceramics[J]. Opt. Precision Eng., 2020, 28(2): 398-404.(in Chinese)

    [18] 胡逸凡, 章海军, 倪凯佳. 三角放大型压电陶瓷微纳米驱动机构[J]. 光学 精密工程, 2022, 30(17): 2094-2099. doi: 10.37188/OPE.20223000.0223HUY F, ZHANGH J, NIK J. Mini-piezo-element drive microactuator based on triangular amplification[J]. Opt. Precision Eng., 2022, 30(17): 2094-2099.(in Chinese). doi: 10.37188/OPE.20223000.0223

    [19] 王耿, 魏维宁, 代军, 等. 线性偏摆复合型压电微动平台[J]. 光学 精密工程, 2022, 30(9): 1058-1070. doi: 10.37188/OPE.20223009.1058WANGG, WEIW N, DAIJ, et al. Linear yaw compound piezoelectric micro-motion platform[J]. Opt. Precision Eng., 2022, 30(9): 1058-1070.(in Chinese). doi: 10.37188/OPE.20223009.1058

    [20] 黄涛, 罗治洪, 陶桂宝, 等. 压电定位平台Hammerstein建模与反馈线性化控制[J]. 光学 精密工程, 2022, 30(14): 1716-1724. doi: 10.37188/OPE.20223014.1716HUANGT, LUOZ H, TAOG B, et al. Hammerstein modeling and feedback linearization control for piezoelectric positioning stage[J]. Opt. Precision Eng., 2022, 30(14): 1716-1724. (in Chinese). doi: 10.37188/OPE.20223014.1716

    [21] 马天兵, 陈南南, 吴晓东, 等. Z型压电振动能量收集装置[J]. 光学 精密工程, 2019, 27(9): 1968-1980. doi: 10.3788/ope.20192709.1968MAT B, CHENN N, WUX D, et al. Z-type piezoelectric vibration energy harvesting device[J]. Opt. Precision Eng., 2019, 27(9)1968-1980(in Chinese). doi: 10.3788/ope.20192709.1968

    [22] 王淑云, 严梦加, 阚君武, 等. 间接激励式压电风力俘能器[J]. 光学 精密工程, 2019, 27(5): 1121-1127. doi: 10.3788/ope.20192705.1121WANGS Y, YANM J, KANJ W, et al. Study of piezoelectric wind energy harvester with indirect excitation[J]. Opt. Precision Eng., 2019, 27(5): 1121-1127.(in Chinese). doi: 10.3788/ope.20192705.1121

    [23] L F SUN, W J LI, Y Z WU et al. Active vibration control of a conical shell using piezoelectric ceramics. Journal of Low Frequency Noise, Vibration and Active Control, 36, 366-375(2017).

    [24] Z C HUANG, Y H MAO, A N DAI et al. Active vibration control of piezoelectric sandwich plates. Materials, 15, 3907(2022).

    [25] 凌明祥, 刘谦, 曹军义, 等. 压电位移放大机构的力学解析模型及有限元分析[J]. 光学 精密工程, 2016, 24(4): 812-818. doi: 10.3788/ope.20162404.0812LINGM X, LIUQ, CAOJ Y, et al. Analytical model and finite element analysis of piezoelectric displacement amplification mechanism[J]. Opt. Precision Eng., 2016, 24(4): 812-818.(in Chinese). doi: 10.3788/ope.20162404.0812

    [26] M LING. A general two-port dynamic stiffness model and static/dynamic comparison for three bridge-type flexure displacement amplifiers. Mechanical Systems and Signal Processing, 119, 486-500(2019).

    [27] M LING, J CAO, N PEHRSON. Kinetostatic and dynamic analyses of planar compliant mechanisms via a two-port dynamic stiffness model. Precision Engineering, 57, 149-161(2019).

    [28] 邱勇, 毛勇建, 蒋华兵. 实验室力学与热学环境试验技术[M]. 北京: 科学出版社, 2021.QIUY, MAOY J, JIANGH B. Laboratory Test Techniques for Mechanical and Thermal Environment Simulation[M]. Beijing: Science Press, 2021.(in Chinese)

    [29] 严侠, 何颖波, 毛勇建, 等. 一种适用于串联型激振系统的分频振动控制方法: CN202211441077.3[P]. 2023-03-14.YANX, HEY B, MAOY J, et al. A Frequency Dividing Control Method for Hybrid Excitation Systems: CN202211441077.3[P]. 2023-03-14(in Chinese)

    [30] 郑敏, 严侠, 邓婷, 等. 一种液压作动器支撑力平衡及工作位定中控制方法: CN202011452313.2[P]. 2022-07-22.ZHENGM, YANX, DENGT, et al. Supporting Force Balance and Working Position Centering Control Method for Hydraulic Actuator: CN2020 11452313.2[P]. 2022-07-22.(in Chinese)

    [31] 邓婷, 严侠, 王宇飞. 一种非平稳随机振动试验控制系统设计[J]. 装备环境工程, 2022, 19(3): 94-100. doi: 10.7643/issn.1672-9242.2022.03.014DENGT, YANX, WANGY F. A control system design of non-stationary random vibration experiment[J]. Equipment Environmental Engineering, 2022, 19(3): 94-100.(in Chinese). doi: 10.7643/issn.1672-9242.2022.03.014

    [32] 康甜, 欧峰, 严侠, 等. 变均方根随机振动? 变加速度离心复合试验[J]. 航天器环境工程, 2022, 39(4): 395-400.KANGT, OU F, YANX, et al. Combined variable RMS random vibration and variable centrifugal acceleration test[J]. Spacecraft Environment Engineering, 2022, 39(4): 395-400.(in Chinese)

    Yongjian MAO, Minghai LI, Yingbo HE, Xia YAN, Qian LIU, Mingxiang LING, Tian KANG. Development of a piezoelectric-hydraulic series hybrid vibration exciter undergoing dynamic overloads[J]. Optics and Precision Engineering, 2023, 31(22): 3318
    Download Citation