• Optics and Precision Engineering
  • Vol. 31, Issue 22, 3318 (2023)
Yongjian MAO1, Minghai LI1, Yingbo HE2,*, Xia YAN1..., Qian LIU1, Mingxiang LING1 and Tian KANG1|Show fewer author(s)
Author Affiliations
  • 1Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang62999, China
  • 2China Academy of Engineering Physics, Mianyang61999, China
  • show less
    DOI: 10.37188/OPE.20233122.3318 Cite this Article
    Yongjian MAO, Minghai LI, Yingbo HE, Xia YAN, Qian LIU, Mingxiang LING, Tian KANG. Development of a piezoelectric-hydraulic series hybrid vibration exciter undergoing dynamic overloads[J]. Optics and Precision Engineering, 2023, 31(22): 3318 Copy Citation Text show less

    Abstract

    A light-weight and wide-bandwidth vibration exciter operating in dynamic overload environments was developed to conduct combined simulations of dynamic overload and time-varying vibration. A piezoelectric-hydraulic series hybrid vibration excitation method and corresponding configuration are proposed to solve the problem of narrow bandwidth with light weight or heavy weight with wide bandwidth. A six-element piezoelectric parallel excitation module was designed and the corresponding precise assembly technology was built, achieving a parallel excitation efficiency of 74.2%. A hydraulic embedded centering method is also proposed for the hydraulic actuator to operate in dynamic overload environments. In addition, a hydraulic excitation module with a novel cylinder-in-cylinder configuration was developed. The frequency-division control method for series hybrid excitation systems was designed based on a frequency divider, with the hydraulic and piezoelectric vibration excitation modules working coordinately and loading with equilibrium. Combining force balance control with zero-displacement feedback compensation, a centering control method was designed for the hydraulic excitation module. Thus, precise centering in dynamic overloads was accomplished. Two time-varying vibration control methods, namely variable gain and long-duration waveform replication methods, are proposed, and the integrative control system was developed as well. Performance tests show that the developed hydraulic-piezoelectric series hybrid vibration exciter features excitation abilities of acceleration over 6 grms and frequency band covering 10-2 000 Hz for a payload over 50 kg in centrifugal overload exceeding 60 g and overload rate exceeding 15 g/s, respectively. The exciter was installed on a dynamic centrifuge and applied in a number of tests for inertial sensors, assemblies, and systems with good load control effects. In comparison to real flight tests, the dynamic overload-vibration simulation technique presented in this paper provides a more efficient and more economical laboratory approach for testing functional properties of guidance and control systems of aircrafts and spacecrafts, especially for large sample test data accumulation.
    R=AL2-12Icosθsinθ12Icos2θ+AL2sin2θ(1)

    View in Article

    Yongjian MAO, Minghai LI, Yingbo HE, Xia YAN, Qian LIU, Mingxiang LING, Tian KANG. Development of a piezoelectric-hydraulic series hybrid vibration exciter undergoing dynamic overloads[J]. Optics and Precision Engineering, 2023, 31(22): 3318
    Download Citation