• Laser & Optoelectronics Progress
  • Vol. 53, Issue 10, 100001 (2016)
Hua Guoran1、*, Zhou Dongcheng1, Cao Yupeng1、2, Feng Aixin2, and Chen Haotian1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop53.100001 Cite this Article Set citation alerts
    Hua Guoran, Zhou Dongcheng, Cao Yupeng, Feng Aixin, Chen Haotian. Research Progress of Quantitatively Controlling Surface Residual Stress by Laser Shock Processing[J]. Laser & Optoelectronics Progress, 2016, 53(10): 100001 Copy Citation Text show less
    References

    [1] Zhang Y, Gu Y, Zhang X, et al. Study of the mechanism of overlays acting on laser shock waves[J]. Journal of Applied Physics, 2006, 100(10): 103517.

    [2] Lu J Z, Luo K Y, Dai F Z, et al. Effects of multiple laser shock processing (LSP) impacts on mechanical properties and wear behaviors of AISI 8620 steel[J]. Materials Science & Engineering A, 2012, 536(3): 57-63.

    [3] Wang Yonggang, BOUSTIE M, He Hongliang, et al. Experimental study on mechanical behavior and tensile spallation of pure aluminium under laser shock loading[J]. High Power Laser and Particle Beams, 2005, 17(7): 966-970.

    [4] Berthe L, Fabbro R, Peyre P, et al. Shock waves from a water-confined laser-generated plasma[J]. Journal of Applied Physics, 1997, 82(6): 2826-2832.

    [5] He H, Kobayashi T, Sekine T. Accurate measurement of the velocity history of a laser-driven foil plate with a push-pull-type VISAR[J]. Applied Optics, 2001, 40(34): 6327-6333.

    [6] Shu Hua, Fu Sizu, Huang Xiuguang, et al. Line-imaging optical recording velocity interferometer at “Shengguang-Ⅱ” laser facility and its applications[J]. Acta Physica Sinica, 2012, 61(11): 114102.

    [7] Shu H, Fu S, Huang X, et al. Plastic behavior of aluminum in high strain rate regime[J]. Journal of Applied Physics, 2014, 116(3): 033506.

    [8] Shu Hua, Fu Sizu, Ma Minxun, et al. Calculation on laser driven shock wave stability of propagation[J]. High Power Laser and Particle Beams, 2007, 19(2): 253-256.

    [9] Peyre P, Berthe L, Fabbro R, et al. Experimental determination by PVDF and EMV techniques of shock amplitudes induced by 0.6-3 ns laser pulses in a confined regime with water[J]. Journal of Physics D: Applied Physics, 2000, 33(5): 498-503.

    [10] Morales M, Porro J A, Blasco, M, et al. Numerical simulation of plasma dynamics in laser shock processing experiments[J]. Applied Surface Science, 2009, 255(10): 5181-5185.

    [11] Wu Bian, Wang Shengbo, Guo Dahao, et al. Research of material modification induced by laser shock processing on aluminum alloy[J]. Acta Optica Sinica, 2005, 25(10): 1352-1356.

    [12] Yu Shuisheng, Yao Hongbing, Wang Fei, et al. Influence of interaction parameters on high power laser induced shockwave in magnesium alloy[J]. Chinese J Lasers, 2010, 37(5): 1386-1390.

    [13] Zhang Yongkang, Yu Shuisheng, Yao Hongbing, et al.Experimental study of shock waves induced by high-power pulsed laser in AZ31B magnesium alloy[J]. Acta Physica Sinica, 2010, 59(8): 5602-5605.

    [14] Hu Yongxiang. Research on the numerical simulation and impact effects of laser shock processing[D]. Shanghai: Shanghai Jiao Tong University, 2008.

    [15] Feng Aixin, Nie Guifeng, Xue Wei, et al. Experimental research on laser shock wave loading mechanism of 2024 aluminum alloy sheet[J]. Acta Metallurgical Sinica, 2012, 48(2): 205-210.

    [16] Feng Aixin, Han Zhenchun, Nie Guifeng, et al. Tests for dynamic stress-strain of 2024 aluminum alloy induced by laser shocking[J]. Journal of Vibration and Shock, 2013, 32(14): 200-203.

    [17] Feng Aixin, Yin Cheng, Cao Yupeng, et al. Experimental research on laser-induced dynamic response of AZ31B magnesium alloy sheet[J]. High Power Laser and Particle Beams, 2014, 26(10): 109002.

    [18] Yin Cheng, Feng Aixin, Cao Yupeng, et al. Experimental research of dynamic and static respond of AZ31B magnesium alloy sheet by laser shock wave[J]. Applied Laser, 2014, 34(6): 562-566.

    [19] Cao Y, Feng A, Hua G. Influence of interaction parameters of laser shock wave induced dynamic strain on 7050 aluminum alloy surface[J]. Journal of Applied Physics, 2014, 116(15): 153105.

    [20] Ocana J L, Morales M, Molpeceres C, et al. Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments[J]. Applied Surface Science, 2004, 238(1-4): 242-248.

    [21] Cheng G J, Shehadeh M A. Multiscale dislocation dynamics analyses of laser shock peening in silicon single crystals[J]. International Journal of Plasticity, 2006, 22(12): 2171-2194.

    [22] Feng A X, Sun H Y, Cao Y P, et al. Residual stress determination by X-ray diffraction with stress of two directions analysis method[J]. Applied Mechanics and Materials, 2010, 43: 569-572.

    [23] Nie Guifeng, Feng Aixin, Ren Xudong, et al. Effect of laser shock processing parameters on residual principal stresses and its directions of 2024 aluminum Alloy[J]. Chinese J Lasers, 2012, 39(1): 0103006.

    [24] Feng Aixin, Li Bing, Guo Rucheng, et al. Analysis of residual stress state of spring steel wire induced by laser shock processing[J]. High Power Laser and Particle Beams, 2013, 25(7): 1635-1638.

    [25] Cao Yupeng, Xue Wei, Feng Aixin, et al. Measure and analysis the residual stress of the area of protective coating containing Ni by pulsed laser discrete scratching testing[J]. Applied Laser, 2013, 33(3): 294-298.

    [26] Peyre P, Chaieb I, Braham C. FEM calculation of residual stresses induced by laser shock processing in stainless steels[J]. Modelling & Simulation in Materials Science & Engineering, 2007, 15(3): 205-221.

    [27] Li Xiaoyan. The experimental research on the laser shock forming of the sheet-metal and finite element analysis[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.

    [28] Cao Yupeng, Feng Aixin,Hua Guoran, et al. Test for dynamic stress-strain of 2024 aluminum alloy surface under high strain rate by pulsed laser shock[J]. Applied Laser, 2015, 35(3): 324-329.

    [29] Cao Yupeng, Xu Ying, Feng Aixin, et al. Experimental research of the residual principal stresses formation mechanism of 7050 aluminum alloy sheet by laser shock processing[J]. Chinese J Lasers, 2016, 43(7): 0702008.

    [30] Huang C X, Xu Y B, Kalantar D H. Effect of shock compression method on the defect substructure in monocrystalline copper[J]. Materials Science & Engineering A, 2005, 409(1): 270-281.

    [31] Loomis E, Peralta P, Swift D, et al. Cross-sectional TEM studies of plastic wave attenuation in shock loaded NiAl[J]. Materials Science & Engineering A, 2006, 437(2): 212-221.

    [32] Cui Xinlin, Zhu Wenjun, He Hongliang, et al. Effect of void volume on phase transformation of iron under laser shock loading[J]. High Power Laser and Particle Beams, 2009, 21(7): 1074-1078.

    [33] Luo S N, Germann T C, Tonks D L, et al. Shock wave loading and spoliation of copper bicrystals with asymmetric 3 tilt grain boundaries[J]. Journal of Applied Physics, 2010, 108(9): 093526.

    [34] Ye C, Suslov S, Kim B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 2011, 59(3): 1014-1025.

    [35] Ye C, Suslov S, Dong Lin, et al. Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties[J]. Philosophical Magazine, 2012, 92(11): 1-21.

    [36] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16): 5354-5362.

    [37] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.

    [38] Luo Xinmin, Zhao Guangzhi, Zhang Yongkang, et al. Laser shock processing of Ti-6Al-4V and analysis of its microstructure response[J]. Acta Metallurgical Sinica, 2012, 48(9): 1116-1122.

    [39] Lu J Z, Qi H, Luo K Y, et al. Corrosion behavior of AISI 304 stainless steel subjected to massive laser shock peening impacts with different pulse energies[J]. Corrosion Science, 2014, 80: 53-59.

    [40] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11): 3984-3994.

    [41] Luo Xinmin, Wang Xiang, Chen Kangmin, et al. Surface layer high-entropy structure and anti-corrosion performance of aero aluminum alloy induced by laser shock processing[J]. Acta Metallurgical Sinica, 2015, 51(1): 57-66.

    Hua Guoran, Zhou Dongcheng, Cao Yupeng, Feng Aixin, Chen Haotian. Research Progress of Quantitatively Controlling Surface Residual Stress by Laser Shock Processing[J]. Laser & Optoelectronics Progress, 2016, 53(10): 100001
    Download Citation