• Laser & Optoelectronics Progress
  • Vol. 56, Issue 20, 201005 (2019)
Shiyu Hu, Guodong Wang*, Yi Zhao, Yanjie Wang, and Zhenkuan Pan
Author Affiliations
  • College of Computer Science and Technology, Qingdao University, Qingdao, Shandong 266071, China
  • show less
    DOI: 10.3788/LOP56.201005 Cite this Article Set citation alerts
    Shiyu Hu, Guodong Wang, Yi Zhao, Yanjie Wang, Zhenkuan Pan. Image Super-Resolution Network Based on Dense Connection and Squeeze Module[J]. Laser & Optoelectronics Progress, 2019, 56(20): 201005 Copy Citation Text show less
    DSSR (top) and LapSRN (bottom) algorithms deal with different images. (a) Images processed with different scale factors; (b) building edges result
    Fig. 1. DSSR (top) and LapSRN (bottom) algorithms deal with different images. (a) Images processed with different scale factors; (b) building edges result
    Structure of DSSR
    Fig. 2. Structure of DSSR
    Structure of dense block
    Fig. 3. Structure of dense block
    Structure of squeeze module
    Fig. 4. Structure of squeeze module
    Example of image data augmentation. (a) Original image; (b) horizontal flip image; (c) rotate 180° image; (d) vertical flip image
    Fig. 5. Example of image data augmentation. (a) Original image; (b) horizontal flip image; (c) rotate 180° image; (d) vertical flip image
    Image decomposition map. (a) Decomposed image of Y channel; (b) decomposed image of Cb channel; (c) decomposed image of Cr channel
    Fig. 6. Image decomposition map. (a) Decomposed image of Y channel; (b) decomposed image of Cb channel; (c) decomposed image of Cr channel
    Nonlinear output of different images. (a) Nonlinear output of nature image; (b) nonlinear output of text image; (c) nonlinear output of building image; (d) nonlinear output of person
    Fig. 7. Nonlinear output of different images. (a) Nonlinear output of nature image; (b) nonlinear output of text image; (c) nonlinear output of building image; (d) nonlinear output of person
    Nonlinear feature maps of feature extraction and image reconstruction. (a) Nonlinear mapping part feature map of the first convolution layer; (b) nonlinear mapping part feature map of the first concatenate layer
    Fig. 8. Nonlinear feature maps of feature extraction and image reconstruction. (a) Nonlinear mapping part feature map of the first convolution layer; (b) nonlinear mapping part feature map of the first concatenate layer
    Super-resolution results of “img_020” (bsd100) with scale factor ×2. (a) Original image; (b) result from Bicubic[28]; (c) result from A+[37]; (d) result from SRCNN[12]; (e) result from WSD-SR[38]; (f) result from VDSR[15]; (g) result from DRCN[39]; (h) result from LapSRN[40]; (i) result from DCSCN[19]; (j) DSSR
    Fig. 9. Super-resolution results of “img_020” (bsd100) with scale factor ×2. (a) Original image; (b) result from Bicubic[28]; (c) result from A+[37]; (d) result from SRCNN[12]; (e) result from WSD-SR[38]; (f) result from VDSR[15]; (g) result from DRCN[39]; (h) result from LapSRN[40]; (i) result from DCSCN[19]; (j) DSSR
    Super-resolution results of “img_003” (Set5) with scale factor ×3. (a) Original image; (b) result from Bicubic; (c) result from A+; (d) result from SRCNN; (e) result from WSD-SR; (f) result from VDSR; (g) result from DRCN; (h) result from LapSRN; (i) result from DCSCN; (j) DSSR
    Fig. 10. Super-resolution results of “img_003” (Set5) with scale factor ×3. (a) Original image; (b) result from Bicubic; (c) result from A+; (d) result from SRCNN; (e) result from WSD-SR; (f) result from VDSR; (g) result from DRCN; (h) result from LapSRN; (i) result from DCSCN; (j) DSSR
    Super-resolution results of “img_012” (Set14) with scale factor×4. (a) Original image; (b) result from Bicubic; (c) result from A+; (d) result from SRCNN; (e) result from WSD-SR; (f) result from VDSR; (g) result from DRCN; (h) result from LapSRN; (i) result from DCSCN; (j) DSSR
    Fig. 11. Super-resolution results of “img_012” (Set14) with scale factor×4. (a) Original image; (b) result from Bicubic; (c) result from A+; (d) result from SRCNN; (e) result from WSD-SR; (f) result from VDSR; (g) result from DRCN; (h) result from LapSRN; (i) result from DCSCN; (j) DSSR
    Dataset3 DBs2 DBs(filters: 128)2DBs
    Set533.6533.7633.87
    Set1429.7029.8229.87
    B10028.8028.8528.90
    Urban10027.1727.2127.31
    Table 1. Some parameters fine-tuned (number of dense blocks, number of filters) when the scale factor is 3. Bold fonts indicate the best performance
    ParameterSRCNNVDSRDRCNLapSRNDCSCNDSSR
    Number of CNN layers32020241110
    Network inputLR with bicubicLR with bicubicLR with bicubicLRLRLR
    Residual learningNoYesNoYesYesYes
    Loss functionL2L2L2CharbonnierL2L1
    Activation functionReLUReLUReLUReLUReLUPReLU
    Parameter number /k5766517758128772
    Table 2. Technical implementation and parameter details of each super-resolution algorithm
    AlgorithmScaleSet5Set14B100Urban100
    PSNR /timePSNR /timePSNR /timePSNR /time
    BicubicA+WSD-SRSRCNNVDSRDRCNLapSRNDCSCNDSSR22222222233.66/0.00 s36.54/0.58 s 37.21/0.34 s36.66/2.19 s37.53/0.13 s37.63/-37.52/0.058 s37.64/0.12 s37.73/0.010 s30.24/0.00 s32.26/0.86 s32.83/0.75 s32.42/4.32 s33.03/0.25 s33.06/-33.08/0.174 s33.05/0.21 s33.15/0.15429.56/0.00 s31.21/0.59 s31.41/0.45 s31.36/2.51 s31.90/0.16 s31.85/-31.08/0.09 s31.91/0.18 s32.02/0.088 s26.88/0.00 s29.20/2.96 s30.29/2.96 s29.50/22.12 s30.76/0.98 s30.76/-30.41/0.752 s30.75/1.51 s30.96/0.780 s
    BicubicA+WSD-SRSRCNNVDSRDRCNLapSRNDCSCNDSSR33333333330.39/0.00 s32.58/0.32 s33.50/0.27 s32.75/2.23 s33.66/0.13 s33.85/-33.82/0.097 s33.75/0.51 s33.89/0.147 s27.55/0.00 s29.13/0.56 s29.72/0.34 s29.28/4.40 s29.77/0.26 s29.89/-29.87/0.13 s29.80/0.21 s29.90/0.139 s27.21/0.00 s28.29/0.33 s28.53/0.79 s28.41/2.58 s28.82/0.21 s28.81/-28.82/0.105 s28.80/0.14 s28.90/0.065 s24.46/0.00 s26.03/1.67 s26.95/1.41 s26.24/19.35 s27.14/1.08 s27.16/-27.07/0.57 s27.14/1.35 s27.17/0.878 s
    BicubicA+WSD-SRSRCNNVDSRDRCNLapSRNDCSCNDSSR44444444428.42/0.00 s30.28/0.24 s31.39/0.44 s30.48/2.19 s31.35/0.12 s31.56/-31.54/0.11 s31.40/0.22 s31.67/0.145 s26.00/0.00 s27.32/0.38 s27.98/0.48 s27.49/4.39 s28.01/0.25 s28.15/-28.19/0.20 s28.02/0.44 s28.21/0.12 s25.96/0.00 s26.82/0.26 s27.08/0.43 s26.90/2.51 s27.29/0.21 s27.24/-27.32/0.15 s27.31/0.36 s27.37/0.059 s23.14/0.00 s24.32/1.21 s25.16/1.36 s24.52/18.46 s25.18/1.06 s25.18/-25.21/0.56 s25.20/1.47 s25.24/0.952 s
    Table 3. Average PSNR and time of different scale factors on the four benchmark datasets Set5, Set14, B100 and Urban100 (Bold fonts indicate the best performance)
    Shiyu Hu, Guodong Wang, Yi Zhao, Yanjie Wang, Zhenkuan Pan. Image Super-Resolution Network Based on Dense Connection and Squeeze Module[J]. Laser & Optoelectronics Progress, 2019, 56(20): 201005
    Download Citation