• Laser & Optoelectronics Progress
  • Vol. 59, Issue 24, 2415004 (2022)
Mingrui Lu1、2, Chao Han1、2、*, Fan Lu1、2, Baorui Miao1、2, Jikun Yang1、2, Junjun Zha1、2, and Wenhan Sha3
Author Affiliations
  • 1School of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui , China
  • 2Key Laboratory of Advanced Perception and Intelligent Control of High-End Equipment, Ministry of Education, Anhui Polytechnic University, Wuhu 241000, Anhui , China
  • 3Chery New Energy Automobile Co., Ltd., Wuhu 241000, Anhui , China
  • show less
    DOI: 10.3788/LOP202259.2415004 Cite this Article Set citation alerts
    Mingrui Lu, Chao Han, Fan Lu, Baorui Miao, Jikun Yang, Junjun Zha, Wenhan Sha. Adaptive Correlation Filtering Tracking Algorithm for Complex Scenes[J]. Laser & Optoelectronics Progress, 2022, 59(24): 2415004 Copy Citation Text show less
    Response diagrams corresponding to Joggle-1 sequence. (a) No occlusion image in frame 4; (b) response diagram of frame 4;(c) occlusion image in frame 49; (d) response diagram of frame 49
    Fig. 1. Response diagrams corresponding to Joggle-1 sequence. (a) No occlusion image in frame 4; (b) response diagram of frame 4;(c) occlusion image in frame 49; (d) response diagram of frame 49
    Flowchart of the proposed algorithm
    Fig. 2. Flowchart of the proposed algorithm
    Influence of different parameters on tracker performance. (a) Parameter ζ; (b) parameter τ; (c) parameters η1 and η2
    Fig. 3. Influence of different parameters on tracker performance. (a) Parameter ζ; (b) parameter τ; (c) parameters η1 and η2
    Precision and success rate of different feature weighted methods. (a) Precision; (b) success rate
    Fig. 4. Precision and success rate of different feature weighted methods. (a) Precision; (b) success rate
    Scale changes of different algorithms under three groups of different video sequences. (a) Blurcar2; (b) Doll; (c) Carscale
    Fig. 5. Scale changes of different algorithms under three groups of different video sequences. (a) Blurcar2; (b) Doll; (c) Carscale
    ΔEAPC value and changes of each frame under the Joggle sequences. (a) Joggle-1; (b) Joggle-2
    Fig. 6. ΔEAPC value and changes of each frame under the Joggle sequences. (a) Joggle-1; (b) Joggle-2
    CLE changing between two sets of videos. (a) Basketball; (b) Faceocc1
    Fig. 7. CLE changing between two sets of videos. (a) Basketball; (b) Faceocc1
    Precision and success rate of seven algorithms on OTB50 dataset. (a) Precision; (b) success rate
    Fig. 8. Precision and success rate of seven algorithms on OTB50 dataset. (a) Precision; (b) success rate
    Precision and success rate of seven algorithms on OTB2015 dataset. (a) Precision; (b) success rate
    Fig. 9. Precision and success rate of seven algorithms on OTB2015 dataset. (a) Precision; (b) success rate
    Comparison of seven algorithms on different video sequences. (a) Box; (b) Dragonbaby; (c) Bird2; (d) Panda; (e) Carscale; (f) Soccer; (g) Tiger2
    Fig. 10. Comparison of seven algorithms on different video sequences. (a) Box; (b) Dragonbaby; (c) Bird2; (d) Panda; (e) Carscale; (f) Soccer; (g) Tiger2
    Parameterαβγ
    λ10.50.40.1
    λ20.30.60.1
    λ31/31/31/3
    Table 1. Three weighted ratios of multi-feature fusion
    SequencePrecisionSuccess rateSpeed /(frame·s-1
    Blurcar20.9991.00044.06
    Carscale0.8970.98060.42
    Doll0.9610.96657.55
    Table 2. Index of the proposed algorithm under three groups of scale sequences
    ParameterOURSOURS4OURS5OURS6SRDCFSRDCFdeconSAMF
    Success rate0.6740.5640.6260.6560.6340.6770.576
    Speed /(frame·s-139.0752.1044.2435.522.055.1814.54
    Table 3. Result comparison of search area algorithms
    AlgorithmIVDEFSVOCCMBFMIPROPROVBCLR
    OURS0.7600.7410.7550.7640.7870.7320.8050.7900.6300.8080.707
    SRDCFdecon0.8030.7300.7710.7340.8080.7630.7150.7590.5610.8140.600
    SRDCF0.7150.6930.6890.6730.7340.7440.6310.6750.5200.6760.594
    SAMF0.6480.6500.6630.7060.6740.6570.6650.7010.6050.6300.645
    fDSST0.7150.5890.6280.6120.6580.6600.6800.6170.4760.7200.609
    DSST0.6770.5090.5780.5520.5850.5480.6440.5980.3570.6480.510
    KCF0.6760.5730.5910.6030.6220.6140.6510.6240.4280.6770.538
    Table 4. Precision of seven target tracking algorithms at 11 different challenge attributes
    AlgorithmIVDEFSVOCCMBFMIPROPROVBCLR
    OURS0.6920.6670.6330.6870.7420.6830.6880.6930.5310.7200.501
    SRDCFdecon0.7480.6410.7120.6940.7950.7290.6490.6860.5610.7400.571
    SRDCF0.6750.6260.6310.6400.7190.7120.5740.6070.4920.6340.581
    SAMF0.5840.5550.5620.6410.6600.5980.6020.6220.4900.5960.539
    fDSST0.6450.5250.5470.5530.6330.6410.6100.5450.4380.6450.547
    DSST0.6010.4370.4890.4910.5680.5150.5520.5060.3050.5350.423
    KCF0.5030.4340.3960.4750.5650.5340.5150.4770.3760.5760.325
    Table 5. Success rate of seven target tracking algorithms at 11 different challenge attributes
    AlgorithmSpeed (frame·s-1
    OTB50OTB2015
    OURS39.077839.2448
    SRDCFdecon2.04971.9694
    SRDCF5.18334.871
    SAMF14.547313.933
    fDSST37.468331.6959
    DSST8.40537.0361
    KCF198.4457173.5403
    Table 6. Running speed of seven target tracking algorithms
    Mingrui Lu, Chao Han, Fan Lu, Baorui Miao, Jikun Yang, Junjun Zha, Wenhan Sha. Adaptive Correlation Filtering Tracking Algorithm for Complex Scenes[J]. Laser & Optoelectronics Progress, 2022, 59(24): 2415004
    Download Citation