• High Power Laser Science and Engineering
  • Vol. 7, Issue 2, 02000e35 (2019)
Jie Guo1, Wei Wang1、2, Hua Lin1, and Xiaoyan Liang1、†,*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1017/hpl.2019.16 Cite this Article Set citation alerts
    Jie Guo, Wei Wang, Hua Lin, Xiaoyan Liang. High-repetition-rate and high-power picosecond regenerative amplifier based on a single bulk Nd:GdVO4 crystal[J]. High Power Laser Science and Engineering, 2019, 7(2): 02000e35 Copy Citation Text show less
    Parameter separatrix (colored blue and yellow) and curve of $\text{NRT}^{\text{MAX}}$ (colored bold black). The red star indicates the optimum working point for 100 kHz repetition rate operation.
    Fig. 1. Parameter separatrix (colored blue and yellow) and curve of $\text{NRT}^{\text{MAX}}$ (colored bold black). The red star indicates the optimum working point for 100 kHz repetition rate operation.
    Schematic of the experimental setup: PP, pulse picker; TFP, thin-film polarizer; FR, Faraday rotator; HWP, half-wave plate; QWP, quarter-wave plate; PC, Pockels cell. The beam inside the RA cavity propagates along the 15 mm long $a$-axis of the Nd:GdVO4 crystal.
    Fig. 2. Schematic of the experimental setup: PP, pulse picker; TFP, thin-film polarizer; FR, Faraday rotator; HWP, half-wave plate; QWP, quarter-wave plate; PC, Pockels cell. The beam inside the RA cavity propagates along the 15 mm long $a$-axis of the Nd:GdVO4 crystal.
    CW output power versus absorbed pump power.
    Fig. 3. CW output power versus absorbed pump power.
    (a) RA regime output power versus absorbed pump power; (b) the last five intracavity signals of the RA.
    Fig. 4. (a) RA regime output power versus absorbed pump power; (b) the last five intracavity signals of the RA.
    Intensity autocorrelation traces of the oscillator and RA output.
    Fig. 5. Intensity autocorrelation traces of the oscillator and RA output.
    (a) Long-term power stability measurement of the RA output. (b) RA output beam quality.
    Fig. 6. (a) Long-term power stability measurement of the RA output. (b) RA output beam quality.
    Parameter Nd:YAG Nd:YVONd:GdVO4
    Pump wavelength (nm)808 869 885808 880 888 808 880 888
    Emission wavelength (nm) 1064 1064 1063
    Emission bandwidth (nm) 0.45 0.8 1.25
    Efficient emission cross-section
    at 1064 nm ($10^{-19}~\text{cm}^{2}$)2.813.5 ($\unicode[STIX]{x1D70B}$)7.6 ($\unicode[STIX]{x1D70B}$)
    6.5 ($\unicode[STIX]{x1D70E}$)1.2 ($\unicode[STIX]{x1D70E}$)
    Upper state lifetime ($\unicode[STIX]{x03BC}\text{s}$)2309190
    Nonlinear refractive index
    ($10^{-16}~\text{cm}^{2}/\text{W}$)8.114.712.6
    Thermal conductivity at 300 K
    ($\text{W}/\text{mK}$)145.1 (a)10.1 (a)
    5.23 (c) 11.4 (c)
    Absorption cross-section at
    808 nm ($10^{-19}~\text{cm}^{2}$)0.412.7 ($\unicode[STIX]{x1D70B}$)5.2 ($\unicode[STIX]{x1D70B}$)
    1.2 ($\unicode[STIX]{x1D70E}$)1.23 ($\unicode[STIX]{x1D70E}$)
    Refractive index at 1064 nm 1.820 2.165 (e) 2.192 (e)
    1.957 (o) 1.972 (o)
    Table 1. Basic properties of three Nd-doped single crystals (see Refs. [3542]).
    ParameterValue ParameterValue
    Stable state small signal
    gain $G_{0}$1.91Round trip loss $l$0.04
    Emission cross-section Upper state lifetime
    $\unicode[STIX]{x1D70E}$ ($\text{cm}^{2}$)$7.6\times 10^{-19}$$T_{1}$ ($\unicode[STIX]{x03BC}\text{s}$)90
    Table 2. Key parameter values for simulation.
    Jie Guo, Wei Wang, Hua Lin, Xiaoyan Liang. High-repetition-rate and high-power picosecond regenerative amplifier based on a single bulk Nd:GdVO4 crystal[J]. High Power Laser Science and Engineering, 2019, 7(2): 02000e35
    Download Citation