• High Power Laser Science and Engineering
  • Vol. 7, Issue 2, 02000e35 (2019)
Jie Guo1, Wei Wang1、2, Hua Lin1, and Xiaoyan Liang1、†,*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1017/hpl.2019.16 Cite this Article Set citation alerts
    Jie Guo, Wei Wang, Hua Lin, Xiaoyan Liang. High-repetition-rate and high-power picosecond regenerative amplifier based on a single bulk Nd:GdVO4 crystal[J]. High Power Laser Science and Engineering, 2019, 7(2): 02000e35 Copy Citation Text show less

    Abstract

    We report on a high-repetition-rate, high-power continuously pumped Nd:GdVO4 regenerative amplifier. Numerical simulations successfully pinpoint the optimum working point free of bifurcation instability with simultaneous efficient energy extraction. At a repetition rate of 100 kHz, a maximum output power of 23 W was obtained with a pulse duration of 27 ps, corresponding to a pulse energy of $230~\unicode[STIX]{x03BC}\text{J}$. The system displayed an outstanding stability with a root mean square power noise as low as 0.3%. The geometry of the optical resonator and the pumping scheme enhanced output power in the $\text{TEM}_{00}$ mode with a single bulk crystal. Accordingly, nearly diffraction-limited beam quality was produced with $M^{2}\approx 1.2$ at full pump power.
    Jie Guo, Wei Wang, Hua Lin, Xiaoyan Liang. High-repetition-rate and high-power picosecond regenerative amplifier based on a single bulk Nd:GdVO4 crystal[J]. High Power Laser Science and Engineering, 2019, 7(2): 02000e35
    Download Citation