• Journal of Inorganic Materials
  • Vol. 35, Issue 6, 633 (2020)
Ying YU1, Hongliang DU1、2、*, Zetian YANG1, Li JIN2, and Shaobo QU1
Author Affiliations
  • 1Department of Basic Sciences, Air Force Engineering University, Xi'an 710051, China
  • 2Electronic Materials Research Laboratory, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • show less
    DOI: 10.15541/jim20190308 Cite this Article
    Ying YU, Hongliang DU, Zetian YANG, Li JIN, Shaobo QU. Electrocaloric Effect of Lead-free Bulk Ceramics: Current Status and Challenges[J]. Journal of Inorganic Materials, 2020, 35(6): 633 Copy Citation Text show less
    References

    [1] Y SHI J, L HAN D, C LI Z et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 3, 1-26(2019).

    [2] G SUCHANECK, G GERLACH. Lead-free relaxor ferroelectrics for electrocaloric cooling. Materials Today: Proceedings, 3, 622-631(2016).

    [3] T CORREIA, Q ZHANG. Electrocaloric Materials: New Generation of Coolers. Berlin: Spinger, 1-3(2014).

    [4] G DU, H LIANG R, T LI et al. Recent progress on defect dipoles characteristics in piezoelectric materials. Journal of Inorganic Materials, 28, 123-130(2013).

    [5] S MISCHENKO A, Q ZHANG, F SCOTT J et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 311, 1270-1271(2006).

    [6] Z ZHANG G, S ZHANG X, N YANG T et al. Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured barium strontium titanates. ACS Nano, 9, 7164-7174(2015).

    [7] Z ZHANG G, Q LI, M GU H et al. Ferroelectric polymer nanocomposites for room temperature electrocaloric refrigeration. Adv. Mater., 27, 1450-1454(2015).

    [8] D WANG, X CHEN, L YUAN G et al. Toward artificial intelligent self-cooling electronic skins: large electrocaloric effect in all-inorganic flexible thin films at room temperature. J. Materiomics, 5, 66-72(2019).

    [9] F DARBANIYAN, K DAYAL, P LIU L et al. Designing soft pyroelectric and electrocaloric materials using electrets. Soft Matter., 15, 262-277(2019).

    [10] Q LI, Z ZHANG G, S ZHAN X et al. Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Adv. Mater., 27, 2236-2241(2015).

    [11] L KLEIN, M APARICIO, A JITIANU. Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications. 2nd ed. Springer: Switzerland, 667-693(2018).

    [12] Y BAI, D WEI, L J QIAO. Control multiple electrocaloric effect peak in Pb(Mg1/3Nb2/3)O3-PbTiO3 by phase composition and crystal orientation. Appl. Phys. Lett, 107(2015).

    [13] J YE H, S QIAN X, Y JEONG D et al. Giant electrocaloric effect in BaZr0.2Ti0.8O3 thick film. Appl. Phys. Lett, 105(2014).

    [14] F LI, R CHEN G, X LIU et al. Type-I pseudo-first-order phase transition induced electrocaloric effect in lead-free Bi0.5Na0.5TiO3- 0.06BaTiO3 ceramics. Appl. Phys. Lett, 110(2017).

    [15] M VALANT, K AXELSSON A, F LE GOUPIL et al. Electrocaloric temperature change constrained by the dielectric strength. Mater. Chem. Phys., 136, 277-280(2012).

    [16] B NEESE, J CHU B, G LU S et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 321, 821-823(2008).

    [17] Z ZHANG G, X WENG L, Y HU Z et al. Nanoconfinement-induced giant electrocaloric effect in ferroelectric polymer nanowire array integrated with aluminum oxide membrane to exhibit record cooling power density. Adv. Mater., 31(2019).

    [18] P ZHUO F, Q LI, H GAO J et al. Coexistence of multiple positive and negative electrocaloric responses in (Pb, La)(Zr, Sn, Ti)O3 single crystal. Appl. Phys. Lett, 108(2016).

    [19] Z KUTNJAK, B ROŽIČ, R PIRC. Wiley Encyclopedia of Electrical and Electronics Engineering (John Wiley& Sons), 1-19(2015).

    [20] Y LIU, F SCOTT J, B DKHIL. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Appl. Phys. Rev, 3(2016).

    [21] Y LI X, G LU S, Z CHEN X et al. Pyroelectric and electrocaloric materials. J. Mater. Chem. C, 1, 23-37(2013).

    [22] M VALANT. Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater Sci., 57, 980-1009(2012).

    [23] Y LIU, F SCOTT J, B DKHIL. Some strategies for improving caloric responses with ferroelectrics. APL Mater, 4(2016).

    [24] V SINYAVSKY Y, M BRODYANSKY V. Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics, 131, 321-325(1992).

    [25] C CAZORLA. In the search of new electrocaloric materials: fast ion conductors. Results Phys., 5, 262-263(2015).

    [26] F SCOTT J. Electrocaloric materials. Annu. Rev. Mater. Res, 41, 229-240(2011).

    [27] S FÄHLER, K RÖßLER U, O KASTNER et al. Caloric effects in ferroic materials: new concepts for cooling. Adv. Eng. Mater., 14, 10-19(2012).

    [28] L MANOSA, A PLANES, M ACET. Advanced materials for solid-state refrigeration. J. Mater. Chem. A, 1, 4925-4936(2013).

    [29] G LU S, G TANG X, H WU S et al. Large electrocaloric effect in ferroelectric materials. Journal of Inorganic Materials, 29, 6-12(2014).

    [30] P ALPAY S, J MANTESE, S TROLIER-MCKINSTRY et al. Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion. MRS Bull., 39, 1099-1111(2014).

    [31] X MOYA, S KAR-NARAYAN, D MATHUR N. Caloric materials near ferroic phase transitions. Nat. Mater., 13, 439-450(2014).

    [32] Y BAI, T LI J, Q QIN S et al. Ferroelectric ceramics for high-efficient solid-state refrigeration. Advanced Ceramics, 39, 369-389(2018).

    [33] W THOMSON, L KELVIN. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter. Phil. Mag., 5, 4-27(1878).

    [34] P KOBEKO, J KURTSCHATOV. Dielektrische eigenschaften der seignettesalzkristalle. Z. Phys., 66, 192-205(1930).

    [35] F HAUTZENLAUB J. Electrocaloric and Dielectric Behavior of Potassium Dihydrogen Phosphate. Massachusetts: Massachusetts Institute of Technology Doctoral Dissertation(1943).

    [36] R RADEBAUGH, N LAWLESS W, D SIEGWARTH J et al. Feasibility of electrocaloric refrigeration for the 4-15 K temperature range. Cryogenics, 19, 187-208(1979).

    [37] T KIMURA, E NEWNHAM R, E CROSS L. Shape-memory effect in PLZT ferroelectric ceramics. Phase Transit., 2, 113-130(1981).

    [38] E BIRKS, L SHEBANOV, A STERNBERG. Electrocaloric effect in PLZT ceramics. Ferroelectrics, 69, 125-129(1986).

    [39] N LAWLESS W. Specific heat and electrocaloric properties of KTaO3 at low temperatures. Phys. Rev. B, 16, 433-439(1977).

    [40] V SINYAVSKY Y, D PASHKOV N, M GOROVOY Y et al. The optical ferroelectric ceramic as working body for electrocaloric refrigeration. Ferroelectrics, 90, 213-217(1989).

    [41] Q XIAO D, B YANG, Q PENG S et al. Analyses and syntheses of ferroelectric refrigeration ceramics. Ferroelectrics, 195, 93-96(1997).

    [42] Y ZHAO, H HAO X, Q ZHANG. A giant electrocaloric effect of Pb0.97La0.02(Zr0.75Sn0.18Ti0.07)O3 antiferroelectric thick film at room temperature near room temperature. J. Mater. Chem. C, 3, 1694-1699(2015).

    [43] B ROŽIČ, B MALIČ, H URŠIČ et al. Direct measurements of the electrocaloric effect in bulk PbMg1/3Nb2/3O3 (PMN) ceramics. Ferroelectrics, 421, 103-107(2011).

    [44] Y HAN L, B GUO S, G YAN S et al. Electrocaloric effect in Pb0.3CaxSr0.7-xTiO3 ceramics near room temperature. Journal of Inorganic Materials, 34, 1011-1014(2019).

    [45] J PERÄNTIE, N TAILOR H, J HAGBERG et al. Electrocaloric properties in relaxor ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 system. J. Appl. Phys., 114(2013).

    [46] P GENG W, Y LIU, J MENG X. Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature. Adv. Mater., 27(2015).

    [47] Y BAI, P ZHENG G, K DING et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film. J. Appl. Phys., 110(2011).

    [48] J JIANG X, H LUO L, Y WANG B et al. Electrocaloric effect based on the depolarization transition in (1-x)Bi0.5Na0.5TiO3-xKNbO3 lead-free ceramics. Ceram. Int., 40, 2627-2634(2014).

    [49] S KUMAR, S SINGH. Study of electrocaloric effect in lead-free 0.9K0.5Na0.5NbO3-0.1CaZrO3 solid solution ceramics. J. Mater. Sci.: Mater. Electron., 30, 12924-12928(2019).

    [50] N NOVAK, R PIRC, Z KUTNJAK. Effect of electric field on ferroelectric phase transition in BaTiO3 ferroelectric. Ferroelectrics, 469, 61-66(2014).

    [51] S QIAN X, J YE H, T ZHANG Y et al. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Adv. Funct. Mater., 24, 1300-1305(2014).

    [52] Y BAI, X HAN, C ZHENG X et al. Both high reliability and giant electrocaloric strength in BaTiO3 ceramics. Sci. Rep., 3(2013).

    [53] Y BAI, P ZHENG G, Q SHI S. Abnormal electrocaloric effect of Na0.5Bi0.5TiO3-BaTiO3 lead-free ferroelectric ceramics above room temperature. Mater. Res. Bull., 46, 1866-1869(2011).

    [54] U PLAZNIK, A KITANOVSKI, B ROŽIČ et al. Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device. Appl. Phys. Lett, 106(2015).

    [55] R CHUKKA, S VANDRANGI, S SHANNIGRAHI et al. An electrocaloric device demonstrator for solid-state cooling. EPL-Europhys. Lett, 103(2013).

    [56] T ZHANG, S QIAN X, M GU H et al. An electrocaloric refrigerator with direct solid to solid regeneration. Appl. Phys. Lett, 110(2017).

    [57] P BLUMENTHAL, A RAATZ. Design methodology for electrocaloric cooling systems. Energy Technol., 6, 1560-1566(2018).

    [58] X MOYA, E DEFAY, D MATHUR N et al. Electrocaloric effects in multilayer capacitors for cooling applications. MRS Bulletin, 43, 291-294(2018).

    [59] J MA R, Y ZHANG Z, K TONG et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science, 357, 1130-1134(2017).

    [60] Y Li X. Electrocaloric Effect in Relaxor Ferroelectric Materials. Pennsylvania: The Pennsylvania State University Doctoral Dissertation(2013).

    [61] B ROŽIČ, B MALIČ, H URŠIČ et al. Direct measurements of the giant electrocaloric effect in soft and solid ferroelectric materials. Ferroelectrics, 405, 26-31(2010).

    [62] M SANLIALP, C MOLIN, V SHVARTSMAN V et al. Modified differential scanning calorimeter for direct electrocaloric measurements. IEEE Trans. Ultrason. Ferroelectrics, 63, 1690-1696(2016).

    [63] S QI, H ZHANG G, H DUAN L et al. Electrocaloric effect in Pb-free Sr-doped BaTi0.9Sn0.1O3 ceramics. Mater. Res. Bull., 91, 31-35(2017).

    [64] T LI J, Y BAI, Q QIN S. Direct and indirect characterization of electrocaloric effect in (Na, K)NbO3 based lead-free ceramics. Appl. Phys. Lett, 109(2016).

    [65] Z ZHOU Y, R LIN Q, F LIU W et al. Compositional dependence of electrocaloric effect in lead-free (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics. RCS Adv., 6, 14084-14089(2016).

    [66] C ROSE M, E COHEN R. Giant electrocaloric effect around TC. Phys. Rev. Lett., 109(2012).

    [67] L ZHAO, Q KE X, J ZHOU Z et al. Large electrocaloric effect over a wide temperature range in BaTiO3-modified lead-free ceramics. J. Mater. Chem. C, 7, 1353-1358(2019).

    [68] X NIE, G YAN S, F CHEN X et al. Correlation between electrocaloric response and polarization behavior: slim-like and square-like hysteresis loop. Phys. Status Solidi A, 215(2018).

    [73] T KARAKI, T KATAYAMA, K YOSHIDA et al. Morphotropic phase boundary slope of (K, Na, Li)NbO3-BaZrO3 binary system adjusted using third component (Bi, Na)TiO3 additive. Jpn. J. Appl. Phys., 52(2013).

    [74] A SASAKI, T CHIBA, Y MAMIYA et al. Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 systems. Jpn. J. Appl. Phys., 38, 5564-5567(1999).

    [75] R CHUKKA, W CHEAH J, H CHEN Z et al. Enhanced cooling capacities of ferroelectric materials at morphotropic phase boundaries. Appl. Phys. Lett, 98(2011).

    [76] D ZHANG T, L LI W, P CAO W et al. Giant electrocaloric effect in PZT bilayer thin films by utilizing the electric field engineering. Appl. Phys. Lett., 108(2016).

    [77] Z YAO F, Q YU, K WANG et al. Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K, Na, Li)(Nb, Ta, Sb)O3 lead-free piezoceramics. RSC Adv., 4, 20062-20068(2014).

    [78] T GOTTSCHALL, D BENKE, M FRIES et al. A matter of size and stress: understanding the first-order transition in materials for solid-state refrigeration. Adv. Funct. Mater., 27(2017).

    [79] W WANG D, F HUSSAIN, A KHESRO et al. Composition and temperature dependence of structure and piezoelectricity in (1-x)(K1-yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J. Am. Ceram. Soc., 100, 627-637(2017).

    [80] S SRIKANTH K, P SINGH V, R VAISH. Enhanced pyroelectric figure of merits of porous BaSn0.05Ti0.95O3 ceramics. J. Eur. Ceram. Soc., 37, 3943-3950(2017).

    [81] K KIM H, G SHI F. Thickness dependent dielectric strength of a low-permittivity dielectric film. IEEE Trans. Electr. In., 8, 248-252(2001).

    [82] G CHEN, W ZHAO J, T LI S et al. Origin of thickness dependent dc electrical breakdown in dielectrics. Appl. Phys. Lett, 100(2012).

    [83] Q LIU X, T CHEN T, S FU M et al. Electrocaloric effects in spark plasma sintered Ba0.7Sr0.3TiO3-based ceramics: effects of domain sizes and phase constitution. Ceram. Int., 40, 11269-11276(2014).

    [85] M MARATHE, A GRÜNEBOHM, T NISHIMATSU et al. First-principles-based calculation of the electrocaloric effect in BaTiO3: a comparison of direct and indirect methods. Phys. Rev. B, 93(2016).

    [86] N NOVAK, R PIRC, Z KUTNJAK. Impact of critical point on piezoelectric and electrocaloric response in barium titanate. Phys. Rev. B, 87(2013).

    [87] T NISHIMATSU, A BARR J, P BECKMAN S. Direct molecular dynamics simulation of electrocaloric effect BaTiO3. J. Phys. Soc. Jpn., 82(2013).

    [88] F HAN, Y BAI, J QIAO L et al. A systematic modification of the large electrocaloric effect within a broad temperature range in rare-earth doped BaTiO3 ceramics. J. Mater. Chem. C, 4, 1842-1849(2016).

    [89] Y BAI, F HAN, S XIE et al. Thickness dependence of electrocaloric effect in high-temperature sintered Ba0.8Sr0.2TiO3 ceramics. J. Alloys Compd., 736, 57-61(2018).

    [90] Z YU, C ANG, R GUO et al. Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics. J. Appl. Phys., 92, 1489-1493(2002).

    [91] G YAO Y, C ZHOU, C LYU D et al. Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: the role of phase coexisting. Europhysics Letters, 98(2012).

    [92] F WEYLAND, T EISELE, S STEINER et al. Long term stability of electrocaloric response in barium zirconate titanate. J. Eur. Ceram. Soc., 38, 551-556(2017).

    [93] X ZHANG, L WU, S GAO et al. Large electrocaloric effect in Ba(Ti1-xSnx)O3 ceramics over a broad temperature region. AIP Adv., 5(2015).

    [94] M SANLIALP, D LUO Z, V SHVARTSMAN V et al. Direct measurement of electrocaloric effect in lead-free Ba(SnxTi1-x)O3 ceramics. Appl. Phys. Lett, 111(2017).

    [95] M HIROSHI. Temperature dependences of the electromechanical and electrocaloric properties of Ba(Zr, Ti)O3 and (Ba, Sr)TiO3 ceramics. Jpn. J. Appl. Phys., 56(2017).

    [96] D JIAN X, B LU, D LI D et al. Direct measurement of large electrocaloric effect in Ba(ZrxTi1-x)O3 ceramics. ACS Appl. Mater. Interfaces, 10, 4801-4807(2018).

    [97] D LUO Z, W ZHANG D, L YANG et al. Enhanced electrocaloric effect in lead-free BaTi1-xSnxO3 ceramics near room temperature. Appl. Phys. Lett, 105(2014).

    [98] F LIU W, B REN X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett., 103(2009).

    [99] P XU Z, H QIANG, Y CHEN et al. Room-temperature electrocaloric effect in (1-x)Ba0.67Sr0.33TiO3-xBa0.9Ca0.1Ti0.9Zr0.1O3 ceramics under moderate electric field. J. Mater. Sci.: Mater. Electron., 29, 7227-7232(2018).

    [100] C TSAI C, H CHAO W, Y CHU S et al. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 lead-free piezoelectric ceramics with high Curie temperature. AIP Advances, 6(2016).

    [101] X NIE, S YAN, S GUO et al. The influence of phase transition on electrocaloric effect in lead-free (Ba0.9Ca0.1)(Ti1-xZrx)O3 ceramics. J. Am. Ceram. Soc., 100, 5202-5210(2017).

    [102] S PATEL, R VAISH. Effect of sintering temperature and dwell time on electrocaloric properties of Ba0.85Ca0.075Sr0.075Ti0.90Zr0.10O3 ceramics. Phase Transit., 90, 465-474(2017).

    [103] G HAO J, J XU Z, Q CHU R et al. Fatigue-resistant, temperature- insensitive strain behavior and strong red photoluminescence in Pr-modified 0.92(Bi0.5Na0.5)TiO3-0.08(Ba0.90Ca0.10)(Ti0.92Sn0.08)O3 lead-free ceramics. J. Eur. Ceram. Soc., 37, 877-882(2017).

    [104] M FAN Z, M LIU X, L TAN X. Large electrocaloric responses in [Bi1/2(Na, K)1/2]TiO3-based ceramics with giant electrostrains. J. Am. Ceram. Soc., 100, 2088-2097(2017).

    [105] M RIEMER L, V LALITHA K, J JIANG X et al. Stress-induced phase transition in lead-free relaxor ferroelectric composites. Acta Mater., 136, 271-280(2017).

    [106] A CHAUHAN, S PATEL, R VAISH. Enhanced electrocaloric effect in pre-stressed ferroelectric materials. Energy Technol., 3, 177-186(2015).

    [107] P CAO W, L LI W, D XU et al. Enhanced electrocaloric effect in lead-free NBT-based ceramics. Ceram. Int., 40, 9273-9278(2014).

    [108] P CAO W, L LI W, F DAI X et al. Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc., 36, 593-600(2016).

    [109] I PONOMAREVA, S LISENKOV. Bridging the macroscopic and atomistic descriptions of the electrocaloric effect. Phys. Rev. Lett., 108(2012).

    [110] M ZANNEN, A LAHMAR, Z KUTNJAK et al. Electrocaloric effect and energy storage in lead free Gd0.02Na0.5Bi0.48TiO3 ceramic. Solid State Sci., 66, 31-37(2017).

    [111] H LUO L, J JIANG X, Y ZHANG Y et al. Electrocaloric effect and pyroelectric energy harvesting of (0.94-x)Na0.5Bi0.5TiO3- 0.06BaTiO3-xSrTiO3 ceramics. J. Eur. Ceram. Soc., 37, 2803-2812(2017).

    [112] F LE GOUPIL, J BENNETT, K AXELSSON A et al. Electrocaloric enhancement near the morphotropic phase boundary in lead-free NBT-KBT ceramics. Appl. Phys. Lett, 107(2015).

    [113] F LE GOUPIL, N M ALFORD. Upper limit of the electrocaloric peak in lead-free ferroelectric relaxor ceramics. APL Mater., 4(2016).

    [114] F LE GOUPIL, R MCKINNON, V KOVAL et al. Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics. Sci. Rep., 6(2016).

    [115] F WEYLAND, M ACOSTA, J KORUZA et al. Criticality: concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics. Adv. Funct. Mater., 26, 7326-7333(2016).

    [116] F LI, R CHEN G, X LIU et al. Phase-composition and temperature dependence of electrocaloric effect in lead-free Bi0.5Na0.5TiO3- BaTiO3-(Sr0.7Bi0.20.1)TiO3 ceramics. J. Eur. Ceram. Soc., 37, 4732-4740(2017).

    [117] L LI J, B ZHAO X, Z XU et al. Electrocaloric effect in lead-free relaxor (1-x)(Sr0.7Bi0.2)TiO3+x(Na0.5Bi0.5)TiO3 material system. Mater. Lett., 187, 68-71(2017).

    [118] Q LI, J WANG, T MA L et al. Large electrocaloric effect in (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics by La2O3 addition. Mater. Res. Bull., 74, 57-61(2016).

    [119] T TUNKASIRI, G RUJIJANAGUL. Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett., 15, 1767-1769(1996).

    [120] L DU H, T YANG Z, F GAO et al. Lead-free nonlinear dielectric ceramics for energy storage application: current status and challenges. Journal of Inorganic Materials, 33, 1046-1058(2018).

    [121] B ROŽIČ, J KORUZA, Z KUTNJAK et al. The electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics. Ferroelectrics, 446, 39-45(2013).

    [122] J KORUZA, B ROŽIČ, G CORDOYIANNIS et al. Large electrocaloric effect in lead-free K0.5Na0.5NbO3-SrTiO3 ceramics. Appl. Phys. Lett., 106(2015).

    [123] A GUPTA, R KUMAR, S SINGH. Coexistence of negative and positive electrocaloric effect in lead-free 0.9(K0.5Na0.5)NbO3-0.1SrTiO3 nanocrystalline ceramics. Scripta Mater., 143, 5-9(2018).

    [124] R KUMAR, S SINGH. Enhanced electrocaloric effect in lead-free 0.9(K0.5Na0.5)NbO3-0.1Sr(Sc0.5Nb0.5)O3 ferroelectric nanocrystalline ceramics. Alloys Compd., 723, 589-594(2017).

    [125] J WANG X, G WU J, B DKHIL et al. Enhanced electrocaloric effect near polymorphic phase boundary in lead-free potassium sodium niobate ceramics. Appl. Phys. Lett., 110(2017).

    [126] R KUMAR, S SINGH. Giant electrocaloric and energy storage performance of [(K0.5Na0.5)NbO3](1-x)-(LiSbO3)x nanocrystalline ceramics. Sci. Rep., 8(2018).

    [127] F LI, B LU, W ZHAI J et al. Enhanced piezoelectric properties and electrocaloric effect in novel lead-free (Bi0.5K0.5)TiO3-La(Mg0.5Ti0.5)O3 ceramics. J. Am. Ceram. Soc., 101, 5503-5513(2018).

    [128] H TAO, L YANG J, X LYU et al. Electrocaloric behavior and piezoelectric effect in relaxor NaNbO3-based ceramics. J. Am. Ceram. Soc., 102, 2578-2586(2019).

    [129] Y YU, F GAO, F WEYLAND et al. Significantly enhanced room temperature electrocaloric response with superior thermal stability in sodium niobate-based bulk ceramics. J. Mater. Chem. A, 7, 11665-11672(2019).

    [130] K AXELSSON A, F LE GOUPIL, M VALANT et al. Electrocaloric effect in lead-free Aurivillius relaxor ferroelectric ceramics. Acta Mater., 124, 120-126(2017).

    Ying YU, Hongliang DU, Zetian YANG, Li JIN, Shaobo QU. Electrocaloric Effect of Lead-free Bulk Ceramics: Current Status and Challenges[J]. Journal of Inorganic Materials, 2020, 35(6): 633
    Download Citation