• Photonic Sensors
  • Vol. 11, Issue 1, 31 (2021)
Wenchao LI1, Yonggui YUAN1, Jun YANG1, and Libo YUAN2、*
Author Affiliations
  • 1The Key Lab of In-Fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, China
  • 2Photonics Research Center, School of Electronic Engineering and Automation, Guilin University of Electronics Technology, Guilin 541004, China
  • show less
    DOI: 10.1007/s13320-021-0613-x Cite this Article
    Wenchao LI, Yonggui YUAN, Jun YANG, Libo YUAN. Review of Optical Fiber Sensor Network Technology Based on White Light Interferometry[J]. Photonic Sensors, 2021, 11(1): 31 Copy Citation Text show less
    References

    [1] Q. Chai, Y. Luo, J. Ren, J. Zhang, J. Yang, L. Yuan, et al., “Review on fiber-optic sensing in health monitoring of power grids,” Optical Engineering, 2019, 58(7): 072007.

    [2] P. Xu, D. Ba, W. He, H. Hu, and Y. Dong, “Distributed Brillouin optical fiber temperature and strain sensing at a high temperature up to 1 000 ℃ by using an annealed gold-coated fiber,” Optics Express, 2018, 26(23): 29724–29734.

    [3] D. Liu, Q. Sun, P. Lu, L. Xia, and C. Sima, “Research progress in the key device and technology for fiber optic sensor network,” Photonic Sensors, 2016, 6(1): 1–25.

    [4] X. He, Z. Ran, T. Yang, Y. Xiao, Y. Wang, and Y. Rao, “Temperature-insensitive fiber-optic tip sensors array based on OCMR for multipoint refractive index measurement,” Optics Express, 2019, 27(7): 9665–9675.

    [5] Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technology Letters, 2011, 23(2): 70–72.

    [6] Z. Wang, F. Shen, L. Song, X. Wang, and A. Wang, “Multiplexed fiber Fabry-Pérot interferometer sensors based on ultrashort Bragg gratings,” IEEE Photonics Technology Letters, 2007, 19(8): 622–624.

    [7] K. St-pień, M. Slowikowski, T. Tenderenda, M. Murawski, M. Szymanski, L. Szostkiewicz, et al., “Fiber Bragg gratings in hole-assisted multicore fiber for space division multiplexing,” Optics Letters, 2014, 39(12): 3571–3574.

    [8] J. Huang, X. Lan, M. Luo, and H. Xiao, “Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry,” Optics Express, 2014, 22(15): 18757–18769.

    [9] T. G. Liu, Z. Yu, J. F. Jiang, K. Liu, X. Z. Zhang, Z. Y. Ding, et al., “Advances of some critical technologies in discrete and distributed optical fiber sensing research,” Acta Physica Sinica, 2017, 66(7): 070705.

    [10] B. A. Childers, M. E. Froggatt, S. G. Allison, T. C. Moore, D. A. Hare, C. F. Batten, et al., “Use of 3 000 Bragg grating strain sensors distributed on four 8-m optical fibers during static load tests of a composite structure,” SPIE, 2001, 4332: 133–142.

    [11] M. Zhang, Q. Sun, Z. Wang, X. Li, H. Liu, and D. Liu, “A large capacity sensing network with identical weak fiber Bragg gratings multiplexing,” Optics Communications, 2012, 285(13–14): 3082–3087.

    [12] Y. J. Rao, A. B. Lobo Ribeiro, D. A. Jackson, L. Zhang, and I. Bennion, “Simultaneous spatial, time and wavelength division multiplexed in-fibre grating sensing network,” Optics Communications, 1996, 125(1–3): 53–58.

    [13] M. Yang, W. Bai, H. Guo, H. Wen, H. Yu, and D. Jiang, “Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings,” Photonic Sensors, 2016, 6(1): 26–41.

    [14] E. Zhao, Y. Yuan, J. Yang, A. Zhou, and L. Yuan, “A novel multiplexed fiber optic deformation sensing scheme,” Sensor Letters, 2012, 10(7): 1526–1528.

    [15] A. Yan, S. Li, Z. Peng, R. Zou, P. Ohodnicki, P. Lu, et al., “Multi-point fiber optic sensors for real-time monitoring of the temperature distribution on transformer cores,” SPIE, 2018, 10639: 1063912.

    [16] Z. Qu, S. Guo, C. Hou, J. Yang, and L. Yuan, “Real-time self-calibration PGC-Arctan demodulation algorithm in fiber-optic interferometric sensors,” Optics Express, 2019, 27(16): 23593–23609.

    [17] S. Li, G. Lu, C. Lai, Y. Huang, and Y. En, “Optical-path difference on-line measurement of multiplexing fiber-optic interferometric sensors using TDM and WDM by improved opticalfrequency- domain reflectometry,” SPIE, 2019, 11340: 113400N.

    [18] M. Wang, Y. Yang, S. Huang, J. Wu, K. Zhao, Y. Li, et al., “Multiplexable high-temperature stable and low-loss intrinsic Fabry-Perot in-fiber sensors through nanograting engineering,” Optics Express, 2020, 28(14): 20225–20235.

    [19] L. Yuan and Y. Dong, “Multiplexed fiber optic twin-sensor array based on a combination of Mach-Zehnder and Michelson interferometers,” Journal of Intelligent Material Systems and Structures, 2009, 20(7): 809–813.

    [20] Y. Yuan, B. Wu, J. Yang, and L. Yuan, “Tunable optical-path correlator for distributed strain or temperature-sensing application,” Optics Letters, 2010, 35(20): 3357–3359.

    [21] W. Li, Y. Yuan, J. Yang, H. Deng, and L. Yuan, “In-fiber integrated sensor array with embedded weakly reflective joint surface,” Journal of Lightwave Technology, 2018, 36(23): 5663–5668.

    [22] W. Li, Y. Yuan, J. Yang, and L. Yuan, “In-fiber integrated quasi-distributed high temperature sensor array,” Optics Express, 2018, 26(26): 34113– 34121.

    [23] Y. Zhao, S. Huang, Z. Cui, Q. Chai, Y. Liu, J. Ren, et al., “Electric-arc-induced strength-controllable weak polarization mode coupling in polarization maintaining fiber,” Applied Optics, 2018, 57(22): 6446.

    [24] W. Li, Y. Yuan, J. Yang, and L. Yuan, “In-fiber integrated high sensitivity temperature sensor based on long Fabry-Perot resonator,” Optics Express, 2019, 27(10): 14675–14683.

    [25] L. Yuan and L. Zhou, “1 × N star coupler as a distributed fiber-optic strain sensor in a white-light interferometer,” Applied Optics, 1998, 37(19): 4168–4172.

    [26] Y. J. Rao and D. A. Jackson, “Prototype multiplexing system for use with a large number of fiber optic based extrinsic Fabry-Perot sensors exploiting low-coherence interrogation,” SPIE, 1995, 2507: 90–98.

    [27] L. Yuan, W. Jin, L. Zhou, Y. L. Hoo, and M. S. Demokan, “Enhanced multiplexing capacity of low-coherence reflectometric sensors with a loop topology,” IEEE Photonics Technology Letters, 2002, 14(8): 1157–1159.

    [28] L. Yuan, W. Jin, L. Zhou, Y. L. Hoo, and M. S. Demokan, “Enhancement of multiplexing capability of low-coherence interferometric fiber sensor array by use of a loop topology,” Journal of Lightwave Technology, 2003, 21(5): 1313–1319.

    [29] L. Yuan, L. Zhou, W. Jin, and J. Yang, “Low-coherence fiber-optic sensor ring network based on a Mach-Zehnder interrogator,” Optics Letters, 2002, 27(11): 894–896.

    [30] L. Yuan, L. Zhou, W. Jin, and J. Yang, “Design of a fiber-optic quasi-distributed strain sensors ring network based on a white-light interferometric multiplexing technique,” Applied Optics, 2002, 41(34): 7205–7211.

    [31] L. Yuan and J. Yang, “Two-loop-based low-coherence multiplexing fiber-optic sensor network with a Michelson optical path demodulator,” Optics Letters, 2005, 30(6): 601–603.

    [32] J. Yang, L. Yuan, and W. Jin, “Improving the reliability of multiplexed fiber optic low-coherence interferometric sensors by use of novel twin-loop network topologies,” Review of Scientific Instruments, 2007, 78(5): 055106.

    [33] S. Li, F. Mokhtar, and L. Yuan, “Multi-array sensors tree network based on white light fiber-optic Mach-Zehnder interferometer,” Sensor Letters, 2012, 10(7): 1378–1381.

    [34] S. Li, L. Yuan, and F. Mokhtar, “Ladder topology network based on white light fiber-optic Mach-Zehnder interferometer,” SPIE, 2011, 8199: 819918.

    [35] Y. Yuan, D. Lu, J. Yang, J. Wang, H. Li, Z. Yu, et al., “Range extension of the optical delay line in white light interferometry,” Applied Optics, 2017, 56(16): 4598–4605.

    [36] Y. Yuan, Y. Cheng, J. Yang, H. Zhang, D. Lu, Y. Lv, et al., “Suppression of interference noise caused by Fresnel reflection in all-fiber white-light interferometer,” Applied Optics, 2017, 56(31): 8732–8737.

    Wenchao LI, Yonggui YUAN, Jun YANG, Libo YUAN. Review of Optical Fiber Sensor Network Technology Based on White Light Interferometry[J]. Photonic Sensors, 2021, 11(1): 31
    Download Citation