• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 1, 2140008 (2021)
Tao Han, Jianrong Qiu, Di Wang, Jia Meng, Zhiyi Liu, and Zhihua Ding*
Author Affiliations
  • State Key Lab of Modern Optical Instrumentation College of Optical Science and Engineering Zhejiang University Hangzhou 310027, P. R. China
  • show less
    DOI: 10.1142/s1793545821400083 Cite this Article
    Tao Han, Jianrong Qiu, Di Wang, Jia Meng, Zhiyi Liu, Zhihua Ding. Constrained polynomial fit-based k-domain interpolation in swept-source optical coherence tomography[J]. Journal of Innovative Optical Health Sciences, 2021, 14(1): 2140008 Copy Citation Text show less
    References

    [1] R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11(8), 889–894 (2003).

    [2] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, "Improved signal-tonoise ratio in spectral-domain compared with timedomain optical coherence tomography," Opt. Lett. 28(21), 2067–2069 (2003).

    [3] W. Zhao, B. Potsaid, L. Chen, C. Doerr, H. C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, J. G. Fujimoto, "Cubic meter volume optical coherence tomography," Optica. 3(12), 1496–1503 (2016).

    [4] N. Nguyen, Q. Liu, "The regular Fourier matrices and nonuniform fast Fourier transforms," SIAM J. Sci. Comput. 21(1), 283–293 (1999).

    [5] T. Wu, Z. H. Ding, K. Wang, C. Wang, "Swept source optical coherence tomography based on nonuniform discrete Fourier transform," Chin. Opt. Lett. 7(10), 941–944 (2009).

    [6] S. Z. Yang, L. W. Liu, Y. X. Chang, N. N. Zhang, K. Liu, L. Hong, B. L. Chen, Y. Zhao, R. Hu, J. L. Qu. "In vivo mice brain microcirculation monitoring based on contrast-enhanced SD-OCT," J. Innov. Opt. Health Sci. 12(1), 1950001 (2019).

    [7] F. J. Xing, J. H. Lee, C. Polucha, J. Lee, "Threedimensional imaging of spatio-temporal dynamics of small blood capillary network in the cortex based on optical coherence tomography: A review," J. Innov. Opt. Health Sci. 13(1), 2030002 (2020).

    [8] A. Abdurashitov, V. Tuchin, O. Semyachkina- Glushkovskaya, "Photodynamic therapy of brain tumors and novel optical coherence tomography strategies for in vivo monitoring of cerebral fluid dynamics," J. Innov. Opt. Health Sci. 13(2), 2030004 (2020).

    [9] K. Zhang, U. K. Jin, "Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT," Opt. Express 18(22), 23472–23487 (2010).

    [10] M. Wojtkowski, "High-speed optical coherence tomography: Basics and applications," Appl. Opt. 49(16), 30–61 (2010).

    [11] X. Wei, A. Camino, S. H. Pi, T. T. Hormel, W. Cepurna, D. Huang, J. C. Morrison, Y. L. Jia, "Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition," Opt. Lett. 44(6), 1431–1434 (2019).

    [12] N. Uribe-Patarroyo, S. H. Kassani, M. Villiger, B. E. Bouma, "Robust wavenumber and dispersion calibration for Fourier-domain optical coherence tomography," Opt. Express 26(7), 9081–9094 (2018).

    [13] Z. L. Hu, A. M. Rollins, "Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer," Opti. Lett. 32(24), 3525–3527 (2007).

    [14] T. Wu, S. S. Sun, X. H. Wang, H. Y. Zhang, C. J. He, J. M. Wang, X. R. Gu, Y. W. Liu. "Optimization of linear-wavenumber spectrometer for high-resolution spectral domain optical coherence tomography," Opt. Commun. 405, 171–176 (2017).

    [15] G. P. Lan, G. Q. Li, "Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography," Sci. Rep. 7, 42353 (2017).

    [16] T. C. Huo, J. Zhang, J. G. Zheng, T. Y. Chen, C. M. Wang, N. Zhang, W. C. Liao, X. Zhang, P. Xue, "Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography," Opt. Lett. 39(2), 247–250 (2014).

    [17] J. Xi, L. Huo, J. Li, X. Li, "Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography," Opt. Express. 18(9), 9511–9517 (2010).

    [18] Y. Quan, Z. Y. Wang, L. P. Song, C. F. Ge, Z. Y. Lu, T. X. Yang, "Ultrafast wavenumber linear-stepswept source based on synchronous lightwave synthesized frequency sweeper," IEEE Photon. J. 11 (1), 1–8 (2019).

    [19] Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, H. Koseki, "Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units," Appl. Opt. 49(25), 4756–4762 (2010).

    [20] V. Sebastien, D. Levesque, G. Lamouche, "Experimental validation of an optimized signal processing method to handle non-linearity in sweptsource optical coherence tomography," Opt. Express 18(10), 10446–10461 (2010).

    [21] L. Y. Fang, S. T. Li, D. Cunefare, S. Farsiu, "Segmentation based sparse reconstruction of optical coherence tomography images," IEEE Trans. Med. Imaging 36(2), 407–421 (2016).

    [22] M. Sucbei, Z. P. Chen, "Phase-stability optimization of swept-source optical coherence tomography," Biomed. Opt. Express 9(11), 5280–5295 (2018).

    [23] Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, T. Yatagai, "Three-dimensional and highspeed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13(26), 10652–10664 (2005).

    [24] T. Wu, Z. H. Ding, L. Wang, M. H. Chen, "Spectral phase based k-domain interpolation for uniform sampling in swept-source optical coherence tomography," Opt. Express 19(19), 18430–18439 (2011).

    [25] Y. Z. Yan, Z. H. Ding, Y. Shen, Z. Y. Chen, C. Zhao, Y. Ni, "High-sensitive and broad-dynamic-range quantitative phase imaging with spectral domain phase microscopy," Opt. Express 21(22), 25734– 25743 (2013).

    [26] M. Meissner, "Accuracy issues of discrete Hilbert transform in identification of instantaneous parameters of vibration signals," Acta Phys. Pol. A 121 (1), A164 (2012).

    [27] J. R. Qiu, T. Han, Z. Y. Liu, J. Meng, Z. H. Ding, "Uniform focusing with an extended depth range and increased working distance for optical coherence tomography by an ultrathin monolith fiber probe," Opt. Lett. 45(4), 976–979 (2020).

    [28] M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, J. S. Duker, "Ultrahighresolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12(11), 2404–2422 (2004).

    [29] C. M. Wang, Y. J. You, S. N. Ai, W. X. Zhang, W. C. Liao, X. Zhang, J. C. Hsieh, N. Zhang, B. Tang, C. L. Pan, P. Xue, "Multi-frame speckle reduction in OCT using supercontinuum pumped by noise-like pulses," J. Innov. Opt. Health Sci. 12(2), 1950009 (2019).

    [30] Y. Z. Yan, Z. H. Ding, L. Wang, C. Wang, Y. Shen, "High-sensitive quantitative phase imaging with averaged spectral domain phase microscopy," Opt. Commun. 303, 21–24 (2013).

    [31] A. T. Zavareh, S. Hoyos, "Kalman-based real-time functional decomposition for the spectral calibration in swept source optical coherence tomography," IEEE Trans. Biomed. Circuits Syst. 14(2), 257–273 (2019).

    [32] K. Wang, Z. H. Ding, "Spectral calibration in spectral domain optical coherence tomography," Chin. Opt. Lett. 6(12), 902–904 (2008).

    Tao Han, Jianrong Qiu, Di Wang, Jia Meng, Zhiyi Liu, Zhihua Ding. Constrained polynomial fit-based k-domain interpolation in swept-source optical coherence tomography[J]. Journal of Innovative Optical Health Sciences, 2021, 14(1): 2140008
    Download Citation