• Infrared and Laser Engineering
  • Vol. 45, Issue 9, 935005 (2016)
Osamu Matoba*
DOI: 10.3788/irla201645.0935005 Cite this Article
Osamu Matoba. Reflection-type holographic disk-type memory using three-dimensional speckle-shift multiplexing[J]. Infrared and Laser Engineering, 2016, 45(9): 935005 Copy Citation Text show less
References

[1] Coufal H J, Psaltis D, Sincerbox G. Holographic Data Storage[M]. Berlin: Springer, 2000.

[2] Hesselink L, Orlov S S, Bashaw M C. Holographic data storage systems[J]. Proceedings of the IEEE, 2004, 92(8): 1231-1280.

[3] Horimai H, Tan X. Collinear technology for a holographic versatile disk[J]. Appl Opt, 2006, 45: 910-914.

[4] Anderson K, Curtis K. Polytopic multiplexing[J]. Opt Lett, 2004, 29: 1402-1404.

[5] Ayres M, Anderson K, Askham F, et al. Holographic data storage at 2+ Tbit/in2[C]//SPIE, 2015, 9386: 9386-17.

[6] Hosaka M, Ishii T, Tanaka A, et al. 1 Tbit/inch 2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule[J]. Jpn J Appl Phys, 2013, 52: 09LD01.

[7] Matoba O, Yokohama Y, Miura M, et al. Reflection-type holographic disk memory with random phase shift multiplexing[J]. Appl Opt, 2006, 45: 3270-3274.

[8] Miura M, Matoba O, Nitta K, et al. Image-based numerical evaluation techniques in volume holographic memory systems[J]. J Opt Soc Am B, 2007, 24: 792-798.

[9] Miura M, Matoba O, Nitta K, et al. Three-dimensional shift selectivity in reflection-type holographic disk memory with speckle shift recording[J]. Appl Opt, 2007, 46: 1460-1466.

[10] Miura M, Matoba O, Nitta K, et al. Speckle shift multiplexing along axial direction in reflection-type holographic memory[J]. Jpn J Appl Phys, 2007, 46(6B): 3832-3836.

[11] Miura M, Nitta K, Matoba O. Numerical estimation of storage capacity in reflection-type holographic disk memory with three-dimensional speckle-shift multiplexing[J]. J Opt Soc Am A, 2009, 26: 2269-2274.

[12] Yonetani Y, Nitta K, Matoba O. Numerical evaluation of angular multiplexing in reflection-type holographic data storage in photopolymer with shrinkage[J]. Applied Optics, 2010, 49(4): 694-700.

[13] Matoba O, Yonetani Y, Nitta K. Improvement of storage capacity using confocal scheme in reflection-type holographic memory system with speckle shift multiplexing[J]. Jpn J Appl Phys, 2011, 50: 09ME08-1-5.

[14] Hiramatsu R, Shigaki M, Nitta K, et al. Multiresolu-tioncoding using amplitude and phase modulations for holographic data storage[J]. Jpn J Appl Phys, 2011, 50: 09ME04-1-4.

[15] Nishizaki T, Nitta K, Matoba O. Available number of multiplexing based on SNR analysis in reflection-type holographic memory using three-dimensional speckle-shift multiplexing[J]. Applied Optics, 2014, 53(25): 5733-5739.

[16] Toishi M, Takeda T, Tanaka K, et al. Two-dimensional simulation of holographic data storage medium for multiplexed recording[J]. Opt Exp, 2008, 16(4): 2829-2839.

Osamu Matoba. Reflection-type holographic disk-type memory using three-dimensional speckle-shift multiplexing[J]. Infrared and Laser Engineering, 2016, 45(9): 935005
Download Citation