• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516002 (2021)
Yang Li1、* and Jianrong Qiu2、**
Author Affiliations
  • 1School of Basic Medical Science, Guangzhou Medical University, Guangzhou , Guangdong 511436, China
  • 2College of Optical Science and Engineering, Zhejiang University, Hangzhou , Zhejiang 310058, China
  • show less
    DOI: 10.3788/LOP202158.1516002 Cite this Article Set citation alerts
    Yang Li, Jianrong Qiu. Persistently Luminescent Phosphors[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516002 Copy Citation Text show less
    References

    [1] Xu J, Tanabe S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective[J]. Journal of Luminescence, 205, 581-620(2019).

    [2] Pan M, Zhu C Y, Wang Z. Long persistence luminescence: shining pearl of life[J]. Chinese Journal of Luminescence, 41, 1087-1092(2020).

    [3] Shen C Q. Expert seminar on “night pearl” held in Beijing[J]. Journal of Gems & Gemology, 6, 47-48(2004).

    [4] Li Y, Gecevicius M, Qiu J. Long persistent phosphors: from fundamentals to applications[J]. Chemical Society Reviews, 45, 2090-2136(2016).

    [5] Xiao Z G, Luo X X[M]. Light-storing luminescent materials and its products(2005).

    [6] Shen Y, Maliwal B P, Lakowicz J R. Long-lived luminescent Re(I) complexes containing cis-carbonyl and bidentate phosphine ligands[J]. Journal of Fluorescence, 11, 315-318(2001).

    [7] Ishizaka T, Kurokawa Y. Creation of long lasting luminescence in transparent aluminas[J]. Journal of Applied Physics, 90, 2257-2261(2001).

    [8] Yamazaki M, Kojima K. Long-lasting afterglow in Tb3+-doped SiO2-Ga2O3-CaO-Na2O glasses and its sensitization by Yb3+[J]. Solid State Communications, 130, 637-639(2004).

    [9] Qiu J R, Hirao K. Long lasting phosphorescence in Eu2+-doped calcium aluminoborate glasses[J]. Solid State Communications, 106, 795-798(1998).

    [10] Ohta M, Maruyama M, Hayakawa T et al. Role of dopant on long-lasting phosphor of strontium aluminate[J]. Journal of the Ceramic Society of Japan, 108, 284-289(2000).

    [11] Li S X, He D W, Cheng Z W et al. Luminescence properties and spectral analysis of long phosphorescent phosphors: Ba1-xCaxAl2O4∶Eu2+, RE3+[J]. Spectroscopy and Spectral Analysis, 25, 665-668(2005).

    [12] Lin Y H, Tang Z L, Zhang Z T et al. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor[J]. Journal of Materials Science Letters, 20, 1505-1506(2001).

    [13] Dorenbos P. Mechanism of persistent luminescence in Eu2+ and Dy3+ codoped aluminate and silicate compounds[J]. Journal of the Electrochemical Society, 152, H107-H110(2005).

    [14] Chen X Z, Li Y, Huang K et al. Trap energy upconversion-like near-infrared to near-infrared light rejuvenateable persistent luminescence[J]. Advanced Materials, 33, 2008722(2021).

    [15] Jia D, Wang X J, van der Kolk E et al. Site dependent thermoluminescence of long persistent phosphorescence of BaAl2O4∶Ce3+[J]. Optics Communications, 204, 247-251(2002).

    [16] Qiu T, Ji Z G, Kong Z et al. Preparation and optimization of long persistent luminescent Sr4Al14O25∶(Eu, Dy) phosphor materials[J]. Journal of Inorganic Materials, 27, 1341-1344(2012).

    [17] Katsumata T, Nabae T, Sasajima K et al. Growth and characteristics of long persistent SrAl2O4- and CaAl2O4-based phosphor crystals by a floating zone technique[J]. Journal of Crystal Growth, 183, 361-365(1998).

    [18] de Chermont Q L, Chanéac C, Seguin J et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 9266-9271(2007).

    [19] Palilla F C, Levine A K, Tomkus M R. Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium[J]. Journal of the Electrochemical Society, 115, 642-644(1968).

    [20] Song Q M, Huang J F, Wu M J et al. Study on synthesis and luminescence property of europium-activated strontium aluminate[J]. Chinese Journal of Luminescence, 12, 144-150(1991).

    [21] Tang M D, Li C K, Gao Z W et al. The study on long persistence of SrAl2O4∶Eu2+[J]. Chinese Journal of Luminescence, 51-56(1995).

    [22] Sakai R, Matsuzawa T, Komuro S, Mprikawa T. Effect of composition on the phosphorescence from BaAl2O4: Eu2+,Dy3+ crystals[J]. Journal of Luminescence, 85, 149-154(1999).

    [23] Matsuzawa T, Aoki Y, Takeuchi N et al. A new long phosphorescent phosphor with high brightness, SrAl2O4∶Eu2+,Dy3+[J]. Journal of the Electrochemical Society, 143, 2670-2673(1996).

    [24] Yamamoto H, Matsuzawa T. Mechanism of long phosphorescence of SrAl2O4∶Eu2+, Dy3+ and CaAl2O4∶Eu2+, Nd3+[J]. Journal of Luminescence, 72/73/74, 287-289(1997).

    [25] Chang C K, Mao D L. Long lasting phosphorescence of Sr4Al14O25∶Eu2+, Dy3+ thin films by magnetron sputtering[J]. Thin Solid Films, 460, 48-52(2004).

    [26] Lin Y H, Zhang Z T, Tang Z L et al. Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phosphor[J]. Journal of the European Ceramic Society, 21, 683-685(2001).

    [27] Fei Q, Chang C K, Mao D L. Luminescent properties of Sr2MgSi2O7 and Ca2MgSi2O7 long lasting phosphors activated by Eu2+, Dy3+[J]. Journal of Alloys and Compounds, 390, 133-137(2005).

    [28] Sun X Y, Zhang J H, Zhang X et al. Long lasting yellow phosphorescence and photostimulated luminescence in Sr3SiO5∶Eu2+and Sr3SiO5∶Eu2+, Dy3+phosphors[J]. Journal of Physics D: Applied Physics, 41, 195414(2008).

    [29] Lin L, Shi C S, Wang Z F et al. A kinetics model of red long-lasting phosphorescence in MgSiO3∶Eu2+, Dy3+, Mn2+[J]. Journal of Alloys and Compounds, 466, 546-550(2008).

    [30] Jiang L L, Xiao S G, Yang X L et al. Preparation and luminescence properties of yellow long-lasting phosphor Ca2ZnSi2O7∶Eu2+, Dy3+[J]. Materials Science and Engineering: B, 178, 123-126(2013).

    [31] Li W Y, Liu Y L, Ai P F et al. Synthesis and characterization of Y2O2S∶Eu3+, Mg2+, Ti4+ nanorods via a solvothermal routine[J]. Journal of Rare Earths, 27, 895-899(2009).

    [32] Höppe H A, Lutz H, Morys P et al. Luminescence in Eu2+-doped Ba2Si5N8∶fluorescence, thermoluminescence, and upconversion[J]. Journal of Physics and Chemistry of Solids, 61, 2001-2006(2000).

    [33] Wang J, Zhang H R, Lei B F et al. Optical energy storage properties of (Ca1-xSrx)2 Si5N8∶Eu2+, Tm3+ solid solutions[J]. Journal of the American Ceramic Society, 98, 1823-1828(2015).

    [34] Wang J, Zhang H R, Lei B F et al. Enhanced photoluminescence and phosphorescence properties of red CaAlSiN3∶Eu2+ phosphor via simultaneous UV-NIR stimulation[J]. Journal of Materials Chemistry C, 3, 4445-4451(2015).

    [35] Wang Q Y, Dong Y, Shao Q Y et al. Low-pressure preparation of Eu-Doped (Sr/Ca)AlSiN3 with Li3N flux and its thermal quenching properties[J]. Optoelectronics and Advanced Materials-Rapid Communications, 12, 95-99(2018).

    [36] Kuang J Y, Liu Y L, Zhang J X. White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3[J]. Journal of Solid State Chemistry, 179, 266-269(2006).

    [37] Lei B F, Li B, Zhang H R et al. Preparation and luminescence properties of CaSnO3∶Sm3+ phosphor emitting in the reddish orange region[J]. Optical Materials, 29, 1491-1494(2007).

    [38] Boutinaud P, Sarakha L, Mahiou R. NaNbO3∶Pr3+: a new red phosphor showing persistent luminescence[J]. Journal of Physics: Condensed Matter, 21, 025901(2009).

    [39] Zhang S, Pang R, Li C Y et al. Green photoluminescence, but blue afterglow of Tb3+ activated Sr4Al14O25[J]. Journal of Luminescence, 130, 2223-2225(2010).

    [40] Che G B, Li X Y, Liu C B et al. Long-lasting phosphorescence properties of Mn2+-doped Cd2Ge7O16orange light-emitting phosphor[J]. Physica Status Solidi (a), 205, 194-198(2008).

    [41] Chen K, Wang X J, Yang G H et al. Luminescent properties of Ca2GdZr2Al3O12∶Mn4+ and Bi3+ codoped phosphors[J]. Acta Optica Sinica, 39, 0216001(2019).

    [42] Cohen A J, Smith H L. Variable transmission silicate glasses sensitive to sunlight[J]. Science, 137, 981(1962).

    [43] Qiu J R, Miura K, Inouye H et al. Femtosecond laser-induced three-dimensional bright and long-lasting phosphorescence inside calcium aluminosilicate glasses doped with rare earth ions[J]. Applied Physics Letters, 73, 1763-1765(1998).

    [44] Smith A M, Mancini M C, Nie S. Bioimaging: second window for in vivo imaging[J]. Nature Nanotechnology, 4, 710-711(2009).

    [45] Hemmer E, Benayas A, Légaré F et al. Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm[J]. Nanoscale Horizons, 1, 168-184(2016).

    [46] Yu N Y, Liu F, Li X F et al. Near infrared long-persistent phosphorescence in SrAl2O4∶Eu2+, Dy3+, Er3+ phosphors based on persistent energy transfer[J]. Applied Physics Letters, 95, 231110(2009).

    [47] Wu H Y, Hu Y H, Kang F W et al. Luminescent properties of praseodymium in CaWO4 matrix[J]. Journal of the American Ceramic Society, 95, 3214-3219(2012).

    [48] Liang Y J, Liu F, Chen Y F et al. Extending the applications for lanthanide ions: efficient emitters in short-wave infrared persistent luminescence[J]. Journal of Materials Chemistry C, 5, 6488-6492(2017).

    [49] Li Y, Li Y Y, Chen R C et al. Tailoring of the trap distribution and crystal field in Cr3+-doped non-gallate phosphors with near-infrared long-persistence phosphorescence[J]. NPG Asia Materials, 7, e180(2015).

    [50] Yang Q T, Renaguli A B D R H M, Yan Y. Brief introduction of Cr3+-doped persistent luminescent nanoparticles in biomedical applied research[J]. Laser & Optoelectronics Progress, 58, 0800002(2021).

    [51] Lu Y Y, Liu F, Gu Z J et al. Long-lasting near-infrared persistent luminescence from β-Ga2O3∶Cr3+ nanowire assemblies[J]. Journal of Luminescence, 131, 2784-2787(2011).

    [52] Bessière A, Jacquart S, Priolkar K et al. ZnGa2O4∶Cr3+:a new red long-lasting phosphor with high brightness[J]. Optics Express, 19, 10131-10137(2011).

    [53] Pan Z, Lu Y Y, Liu F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nature Materials, 11, 58-63(2011).

    [54] Allix M, Chenu S, Véron E et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4[J]. Chemistry of Materials, 25, 1600-1606(2013).

    [55] Zhuang Y X, Ueda J, Tanabe S. Tunable trap depth in Zn(Ga1-xAlx)2O4∶Cr, Bi red persistent phosphors: considerations of high-temperature persistent luminescence and photostimulated persistent luminescence[J]. Journal of Materials Chemistry C, 1, 7849-7855(2013).

    [56] Liu F, Yan W, Chuang Y J et al. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr³⁺-doped LiGa₅O₈[J]. Scientific Reports, 3, 1554(2013).

    [57] Wu Y L, Li Y, Qin X X et al. Dual mode NIR long persistent phosphorescence and NIR-to-NIR Stokes luminescence in La3Ga5GeO14∶Cr3+, Nd3+ phosphor[J]. Journal of Alloys and Compounds, 649, 62-66(2015).

    [58] Wang Y, You Z Y, Li J F et al. Crystal growth and optical properties of Cr3+, Er3+, RE3+∶Gd3Ga5O12 (RE=Tm, Ho, Eu) for mid-IR laser applications[J]. Journal of Luminescence, 132, 693-696(2012).

    [59] Basavaraju N, Sharma S, Bessière A et al. Red persistent luminescence in MgGa2O4∶Cr3+: a new phosphor for in vivo imaging[J]. Journal of Physics D: Applied Physics, 46, 375401(2013).

    [60] Chen D Q, Chen Y, Lu H W et al. A bifunctional Cr/Yb/Tm∶Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence[J]. Inorganic Chemistry, 53, 8638-8645(2014).

    [61] Xu J, Chen D Q, Yu Y L et al. Cr3+∶SrGa12O19∶a broadband near-infrared long-persistent phosphor[J]. Chemistry-An Asian Journal, 9, 1020-1025(2014).

    [62] Liu Z R, Zhong R X. Green and red long lasting phosphorescence (LLP) in γ-Zn3(PO4)2∶Mn2+/Ga3+[J]. Journal of Alloys and Compounds, 556, 6-11(2013).

    [63] Li Y, Li Y Y, Sharafudeen K et al. A strategy for developing near infrared long-persistent phosphors: taking MAlO3∶Mn4+, Ge4+ (M=La, Gd) as an example[J]. Journal of Materials Chemistry C, 2, 2019-2027(2014).

    [64] Kang R, Dou X J, Lian H W et al. SrAl12O19∶Fe3+@3-aminopropyl triethoxysilane: ambient aqueous stable near-infrared persistent luminescent nanocomposites[J]. Journal of the American Ceramic Society, 103, 258-265(2020).

    [65] Chen X Z, Li Y, Huang K et al. Persistent-luminescence phosphors: trap energy upconversion-like near-infrared to near-infrared light rejuvenateable persistent luminescence[J]. Advanced Materials, 33, 2170118(2021).

    [66] Zou Z H, Cao C, Zhang T et al. Structure, long persistent luminescent properties and mechanism of a novel efficient red emitting Ca2Ga2GeO7∶Pr3+ phosphor[J]. Journal of Alloys and Compounds, 680, 397-405(2016).

    [67] Caratto V, Locardi F, Costa G A et al. NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants[J]. ACS Applied Materials & Interfaces, 6, 17346-17351(2014).

    [68] Xu J, Tanabe S, Sontakke A D et al. Near-infrared multi-wavelengths long persistent luminescence of Nd3+ ion through persistent energy transfer in Ce3+, Cr3+ co-doped Y3Al2Ga3O12 for the first and second bio-imaging windows[J]. Applied Physics Letters, 107, 081903(2015).

    [69] Xie Y L, Shen B, Zhou B S et al. Progress in research on rare-earth upconversion luminescent nanomaterials and bio-sensing[J]. Chinese Journal of Lasers, 47, 0207017(2020).

    [70] Wang Z M, Zeng X Y. State and prospect of nanoparticle preparation for laser ablation[J]. Laser Journal, 23, 8-11(2002).

    [71] Yan Z J, Chrisey D B. Pulsed laser ablation in liquid for micro-/nanostructure generation[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13, 204-223(2012).

    [72] Hölsä J, Aitasalo T, Jungner H et al. Role of defect states in persistent luminescence materials[J]. Journal of Alloys and Compounds, 374, 56-59(2004).

    [73] van den Eeckhout K, Bos A J J, Poelman D et al. Revealing trap depth distributions in persistent phosphors[J]. Physical Review B, 87, 045126(2013).

    [74] Zhou X S, Fan J, Chang S Y et al. Preparation of long-afterglow nano-Zn3Ga2Ge2O10∶Cr0.013+, Pr0.033+, Yb0.33+ by sol-gel method and its surface modification[J]. Journal of Synthetic Crystals, 46, 1891-1896(2017).

    [75] Li Z J, Zhang Y W, Wu X et al. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence[J]. Journal of the American Chemical Society, 137, 5304-5307(2015).

    [76] Lin X H, Song L, Chen S et al. Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging[J]. ACS Applied Materials & Interfaces, 9, 41181-41187(2017).

    [77] Lü Y, Ding D D, Zhuang Y X et al. Chromium-doped zinc gallogermanate@zeolitic imidazolate framework-8: a multifunctional nanoplatform for rechargeable in vivo persistent luminescence imaging and pH-responsive drug release[J]. ACS Applied Materials & Interfaces, 11, 1907-1916(2019).

    [78] Yang Y M, Li Z Y, Zhang J Y et al. X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions[J]. Light, Science & Applications, 7, 88(2018).

    [79] Wang W X, Sun Z Y, He X Y et al. How to design ultraviolet emitting persistent materials for potential multifunctional applications: a living example of a NaLuGeO4∶Bi3+, Eu3+ phosphor[J]. Journal of Materials Chemistry C, 5, 4310-4318(2017).

    [80] Dou X J, Xiang H W, Wei P L et al. A novel phosphor CaZnGe2O6∶Bi3+ with persistent luminescence and photo-stimulated luminescence[J]. Materials Research Bulletin, 105, 226-230(2018).

    [81] Wang X L, Chen Y F, Liu F et al. Solar-blind ultraviolet-C persistent luminescence phosphors[J]. Nature Communications, 11, 2040(2020).

    [82] Yuan W Z, Shen X Y, Zhao H et al. Crystallization-induced phosphorescence of pure organic luminogens at room temperature[J]. The Journal of Physical Chemistry C, 114, 6090-6099(2010).

    [83] Endo A, Sato K, Yoshimura K et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes[J]. Applied Physics Letters, 98, 083302(2011).

    [84] An Z F, Zheng C, Tao Y et al. Stabilizing triplet excited states for ultralong organic phosphorescence[J]. Nature Materials, 14, 685-690(2015).

    [85] Kabe R, Adachi C. Organic long persistent luminescence[J]. Nature, 550, 384-387(2017).

    [86] Zhao H, Pan L. Application research of rare earth aluminate luminescent materials in textile field[J]. Shandong Textile Science & Technology, 60, 45-50(2019).

    [87] Chen C, Li H, Jin J J et al. Long-lasting nanophosphors applied to UV-resistant and energy storage perovskite solar cells[J]. Advanced Energy Materials, 7, 1700758(2017).

    [88] Zhuang Y X, Tu D, Chen C J et al. Force-induced charge carrier storage: a new route for stress recording[J]. Light, Science & Applications, 9, 182(2020).

    [89] Castaing V, Monteiro C, Sontakke A D et al. Hexagonal Sr1-x/2Al2-xSixO4∶Eu2+, Dy3+ transparent ceramics with tuneable persistent luminescence properties[J]. Dalton Transactions, 49, 16849-16859(2020).

    [90] Lin X H, Li Y, Saravanakumar S et al. Sunlight-operable light converting smart windows for fertilizer-free plant growth enhancement[J]. Nano Today, 34, 100918(2020).

    [91] Zhang H, Yang Z, Zhao L et al. Long persistent luminescence from all-inorganic perovskite nanocrystals[J]. Advanced Optical Materials, 8, 2000585(2020).

    [92] Sikandar M A, Ahmad W, Khan M H et al. Effect of water resistant SiO2 coated SrAl2O4∶Eu2+ Dy3+ persistent luminescence phosphor on the properties of Portland cement pastes[J]. Construction and Building Materials, 228, 116823(2019).

    Yang Li, Jianrong Qiu. Persistently Luminescent Phosphors[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516002
    Download Citation