• Chinese Optics Letters
  • Vol. 21, Issue 2, 023901 (2023)
Hongqi Zhang1、2, Lu Zhang1、2, Zuomin Yang2, Hang Yang2, Zhidong Lü2, Xiaodan Pang3, Oskars Ozolins3、4, and Xianbin Yu1、2、*
Author Affiliations
  • 1Zhejiang Lab, Hangzhou 311121, China
  • 2College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
  • 3Applied Physics Department, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
  • 4Networks Unit, RISE Research Institutes of Sweden, 16440 Kista, Sweden
  • show less
    DOI: 10.3788/COL202321.023901 Cite this Article Set citation alerts
    Hongqi Zhang, Lu Zhang, Zuomin Yang, Hang Yang, Zhidong Lü, Xiaodan Pang, Oskars Ozolins, Xianbin Yu. Single-lane 200 Gbit/s photonic wireless transmission of multicarrier 64-QAM signals at 300 GHz over 30 m[J]. Chinese Optics Letters, 2023, 21(2): 023901 Copy Citation Text show less
    Experimental configuration of the multicarrier photonics wireless transmission link. PC, polarization controller; IQ-MOD, in-phase and quadrature modulator; UTC-PD, unitraveling carrier photodiode; AWG, arbitrary waveform generator; LNA, low-noise amplifier; EDFA, erbium-doped fiber amplifier; VOA, variable optical attenuator; Pol., polarizer; DSO, digital storage oscilloscope; LO, local oscillator; inset (a), optical spectrum after the 50:50 optical coupler.
    Fig. 1. Experimental configuration of the multicarrier photonics wireless transmission link. PC, polarization controller; IQ-MOD, in-phase and quadrature modulator; UTC-PD, unitraveling carrier photodiode; AWG, arbitrary waveform generator; LNA, low-noise amplifier; EDFA, erbium-doped fiber amplifier; VOA, variable optical attenuator; Pol., polarizer; DSO, digital storage oscilloscope; LO, local oscillator; inset (a), optical spectrum after the 50:50 optical coupler.
    (a) Electrical spectrum of 64-QAM signals before downconversion; (b) picture of experimental setup.
    Fig. 2. (a) Electrical spectrum of 64-QAM signals before downconversion; (b) picture of experimental setup.
    Measured BER performance of three subcarriers after 30 m wireless transmission.
    Fig. 3. Measured BER performance of three subcarriers after 30 m wireless transmission.
    (a) Measured BER performance with increasing baud rate of three subcarriers; (b)–(d) constellation of SC_1, SC_2, and SC_3 at 12 Gbaud.
    Fig. 4. (a) Measured BER performance with increasing baud rate of three subcarriers; (b)–(d) constellation of SC_1, SC_2, and SC_3 at 12 Gbaud.
    Carrier (GHz)Data Rate per Lane (Gbit/s)Modulation FormatTransmission Distance (m)Ref.
    30050OOK100[8]
    300100QPSK0.1[9]
    35010016-QAM2[10]
    3001280.5[11]
    450132PS-64-QAM1.8[12]
    350100.816-QAM-OFDM26.8[13]
    40813110.7[14]
    300–5008016-QAM0.5[15]
    320–380155PS-64-QAM-OFDM2.8[16]
    300202.564-QAM30This work
    Table 1. Development Progress on Photonic THz Communication
    Link ParametersValue
    Operating frequency300 GHz
    Radiation THz power13dBm
    Tx antenna directional gain25 dBi
    Tx antenna convergence gain20 dBi
    Free-space path loss111.5 dB
    Rx antenna convergence gain20 dBi
    Rx antenna directional gain25 dBi
    LNA gain25 dB
    Conversion loss12 dB
    Baseband amplified gain12 dB
    Table 2. Link Parameters of Our Communication System
    Hongqi Zhang, Lu Zhang, Zuomin Yang, Hang Yang, Zhidong Lü, Xiaodan Pang, Oskars Ozolins, Xianbin Yu. Single-lane 200 Gbit/s photonic wireless transmission of multicarrier 64-QAM signals at 300 GHz over 30 m[J]. Chinese Optics Letters, 2023, 21(2): 023901
    Download Citation