• Chinese Journal of Lasers
  • Vol. 50, Issue 10, 1013001 (2023)
Da Teng1、*, Hongli Fang1, Jianjun Yan1, Anran Wang1, Man Jiang1, Binghan Liang1, Xiangli Yang1, Xuemei Hu1, Ziyi Guan1, Yuanming Tian1, and Kai Wang2、**
Author Affiliations
  • 1School of Physics and Electrical Engineering, Zhengzhou Normal University, Zhengzhou 450044, Henan, China
  • 2Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    DOI: 10.3788/CJL220958 Cite this Article Set citation alerts
    Da Teng, Hongli Fang, Jianjun Yan, Anran Wang, Man Jiang, Binghan Liang, Xiangli Yang, Xuemei Hu, Ziyi Guan, Yuanming Tian, Kai Wang. Subwavelength Transmission Characteristics of Graphene‐Dielectric Nanowire Hybrid Waveguides[J]. Chinese Journal of Lasers, 2023, 50(10): 1013001 Copy Citation Text show less
    References

    [1] Alonso Calafell I, Rozema L A, Alcaraz Iranzo D et al. Giant enhancement of third-harmonic generation in graphene–metal heterostructures[J]. Nature Nanotechnology, 16, 318-324(2021).

    [2] Mittendorff M, Winnerl S, Murphy T E. 2D THz optoelectronics[J]. Advanced Optical Materials, 9, 2001500(2021).

    [3] Wang Y C, Zhao H, Huo D W et al. Accumulation-layer hybridized surface plasmon polaritions at an ITO/LiNbO3 interface[J]. Optics Letters, 44, 947-950(2019).

    [4] Zhang C, Xue W R, Chen Y F et al. Ultra-broadband solar absorber based on titanium nitride and titanium dioxide[J]. Acta Optica Sinica, 40, 2124002(2020).

    [5] Teng D, Wang K. Theoretical analysis of terahertz dielectric-loaded graphene waveguide[J]. Nanomaterials, 11, 210(2021).

    [6] Gao M S, Luo Z M, Zhou H M et al. Precise control of Goos-Hänchen shift based on dielectric and graphene coating[J]. Chinese Journal of Lasers, 44, 0703019(2017).

    [7] Yang X G, Li B J. Monolayer MoS2 for nanoscale photonics[J]. Nanophotonics, 9, 1557-1577(2020).

    [8] He X Y, Liu F, Lin F T et al. Tunable MoS2 modified hybrid surface plasmon waveguides[J]. Nanotechnology, 30, 125201(2019).

    [9] Yang X G, Wen L, Yan J H et al. Energy dissipation and asymmetric excitation in hybrid waveguides for routing and coloring[J]. The Journal of Physical Chemistry Letters, 12, 7034-7040(2021).

    [10] He X Y, Liu F, Lin F T et al. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides[J]. Optics Letters, 46, 472-475(2021).

    [11] Tian Y S, Guo X H, Dai L L et al. Broadband tunable terahertz polarizers based on Dirac semimetal[J]. Chinese Journal of Lasers, 46, 0614033(2019).

    [12] Yi N N, Zong R, Gong J et al. Single-/ dual-band switchable terahertz absorber based on vanadium dioxide-Dirac semi-metal hybrid metamaterial[J]. Chinese Journal of Lasers, 49, 0314002(2022).

    [13] Liang G Z, Yu X C, Hu X N et al. Mid-infrared photonics and optoelectronics in 2D materials[J]. Materials Today, 51, 294-316(2021).

    [14] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [15] Yang X X, Kong X T, Dai Q. Optical properties of graphene plasmons and their potential applications[J]. Acta Physica Sinica, 64, 106801(2015).

    [16] Romagnoli M, Sorianello V, Midrio M et al. Graphene-based integrated photonics for next-generation datacom and telecom[J]. Nature Reviews Materials, 3, 392-414(2018).

    [17] Kong X Z, Li J H, Luo X M et al. Graphene surface plasmon polariton modulator based on biased nanowires[J]. Acta Optica Sinica, 41, 1923001(2021).

    [18] Yang X G, Liu Y, Lei H X et al. An organic-inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots[J]. Nanoscale, 8, 15529-15537(2016).

    [19] Wei Z Z, Xue W R, Peng Y L et al. Mode characteristics of waveguides based on three graphene-coated dielectric nanowires[J]. Acta Optica Sinica, 39, 0124001(2019).

    [20] Teng D, Wang K, Li Z. Graphene-coated nanowire waveguides and their applications[J]. Nanomaterials, 10, 229(2020).

    [21] Hanson G W. Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide[J]. Journal of Applied Physics, 104, 084314(2008).

    [22] Hu H, Yu R W, Teng H C et al. Active control of micrometer plasmon propagation in suspended graphene[J]. Nature Communications, 13, 1465(2022).

    [23] Wang Q C, Song L. Propagation characteristics of dielectric-loaded graphene plasma waveguides[J]. Laser&Optoelectronics Progress, 54, 112401(2017).

    [24] Gao Y X, Ren G B, Zhu B F et al. Single-mode graphene-coated nanowire plasmonic waveguide[J]. Optics Letters, 39, 5909-5912(2014).

    [25] Chen B G, Meng C, Yang Z Y et al. Graphene coated ZnO nanowire optical waveguides[J]. Optics Express, 22, 24276-24285(2014).

    [26] Sun M, Tian J P, Lan X H et al. Transmission properties of two vertically coupled double-graphene-coated nanowires integrated with substrate[J]. Optik, 185, 242-247(2019).

    [27] Hajati M, Hajati Y. Plasmonic characteristics of two vertically coupled graphene-coated nanowires integrated with substrate[J]. Applied Optics, 56, 870-875(2017).

    [28] Teng D, Wang Y C, Xu T Z et al. Symmetric graphene dielectric nanowaveguides as ultra-compact photonic structures[J]. Nanomaterials, 11, 1281(2021).

    [29] Teng D, Wang K, Li Z et al. Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range[J]. Optics Express, 27, 12458-12469(2019).

    [30] Hajati M, Hajati Y. High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate[J]. Journal of the Optical Society of America B, 33, 2560-2565(2016).

    [31] Teng D, Guo J K, Yang Y D et al. Study of modal properties in graphene-coated nanowires integrated with substrates[J]. Applied Physics B, 126, 173(2020).

    [32] Wu D, Tian J, Yang R. Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate[J]. Journal of Nonlinear Optical Physics & Materials, 27, 1850013(2018).

    [33] Wang J Q, Xing Z K, Chen X et al. Recent progress in waveguide-integrated graphene photonic devices for sensing and communication applications[J]. Frontiers in Physics, 8, 37(2020).

    [34] Wang J Q, Zhang L, Chen Y Z et al. Saturable absorption in graphene-on-waveguide devices[J]. Applied Physics Express, 12, 032003(2019).

    [35] Yan R, Gargas D, Yang P. Nanowire photonics[J]. Nature Photonics, 3, 569-576(2009).

    [36] Zhang Q, Li G Y, Liu X F et al. A room temperature low-threshold ultraviolet plasmonic nanolaser[J]. Nature Communications, 5, 4953(2014).

    [37] Teng D, Wang K, Huan Q S et al. High-performance light transmission based on graphene plasmonic waveguides[J]. Journal of Materials Chemistry C, 8, 6832-6838(2020).

    [38] Xiao S Y, Wang T, Liu T T et al. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials[J]. Carbon, 126, 271-278(2018).

    [39] Ahmadivand A, Gerislioglu B, Ahuja R et al. Toroidal metaphotonics and metadevices[J]. Laser & Photonics Reviews, 14, 1900326(2020).

    [40] Teng D, Ma W S, Yang Y D et al. Study on subwavelength transmission properties of triangular-shaped graphene-coated nanowires on substrate[J]. Acta Optica Sinica, 40, 1324002(2020).

    [41] Kanahashi K, Tanaka N, Shoji Y et al. Formation of environmentally stable hole-doped graphene films with instantaneous and high-density carrier doping via a boron-based oxidant[J]. Npj 2D Materials and Applications, 3, 7(2019).

    [42] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [43] Zhao Y Z, Teng D, Wang Y C et al. Two processing methods of graphene in finite element calculation[J]. Laser&Optoelectronics Progress, 58, 0723003(2021).

    [44] Wang Z B, Yin S J, Duan X N et al. Hybrid surface-plasmon waveguide with symmetrical triangular ribs[J]. Chinese Journal of Lasers, 47, 0313001(2020).

    [45] Li Z Q, Yue Z, Bai L D et al. Transmission characteristics of mixed double ribbed surface plasmon waveguide[J]. Chinese Journal of Lasers, 44, 0513001(2017).

    [46] Oulton R F, Sorger V J, Genov D A et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2, 496-500(2008).

    [47] Buckley R, Berini P. Figures of merit for 2D surface plasmon waveguides and application to metal stripes[J]. Optics Express, 15, 12174-12182(2007).

    Da Teng, Hongli Fang, Jianjun Yan, Anran Wang, Man Jiang, Binghan Liang, Xiangli Yang, Xuemei Hu, Ziyi Guan, Yuanming Tian, Kai Wang. Subwavelength Transmission Characteristics of Graphene‐Dielectric Nanowire Hybrid Waveguides[J]. Chinese Journal of Lasers, 2023, 50(10): 1013001
    Download Citation