• Advanced Photonics Nexus
  • Vol. 2, Issue 5, 056008 (2023)
Zewei Luo1,2,†, Guodong Zang1,2, Ge Wu1,2, Mengting Kong1,2..., Zhengfei Zhuang1,2 and Tongsheng Chen1,2,*|Show fewer author(s)
Author Affiliations
  • 1South China Normal University, College of Biophotonics, MOE Key Laboratory of Laser Life Science, Guangzhou, China
  • 2South China Normal University, College of Biophotonics, Guangdong Key Laboratory of Laser Life Science, Guangzhou, China
  • show less
    DOI: 10.1117/1.APN.2.5.056008 Cite this Article Set citation alerts
    Zewei Luo, Guodong Zang, Ge Wu, Mengting Kong, Zhengfei Zhuang, Tongsheng Chen, "High-fidelity SIM reconstruction-based super-resolution quantitative FRET imaging," Adv. Photon. Nexus 2, 056008 (2023) Copy Citation Text show less
    References

    [1] A. M. Szalai, C. Zaza, F. D. Stefani. Super-resolution FRET measurements. Nanoscale, 13, 18421-18433(2021).

    [2] L. A. Masullo et al. Fluorescence nanoscopy at the sub-10 nm scale. Biophys. Rev., 13, 1101-1112(2021).

    [3] J. Zhang et al. Reliable measurement of the FRET sensitized-quenching transition factor for FRET quantification in living cells. Micron, 88, 7-15(2016).

    [4] T. Zal, N. R. J. Gascoigne. Photobleaching-corrected FRET efficiency imaging of live cells. Biophys. J., 86, 3923-3939(2004).

    [5] A. Szabo et al. Quo vadis FRET? Förster’s method in the era of superresolution. Methods Appl. Fluoresc., 8, 032003(2020).

    [6] H. E. Grecco, P. J. Verveer. FRET in cell biology: still shining in the age of super-resolution?. ChemPhysChem., 12, 484-490(2011).

    [7] A. Auer et al. Fast, background-free DNA-PAINT imaging using FRET-based probes. Nano Lett., 17, 6428-6434(2017).

    [8] S. Cho et al. Simple super-resolution live-cell imaging based on diffusion-assisted Förster resonance energy transfer. Sci. Rep., 3, 1208(2013).

    [9] H. Wallrabe, A. Periasamy. Imaging protein molecules using FRET and FLIM microscopy. Anal. Biotechnol., 16, 19-27(2005).

    [10] A. M. Szalai et al. Super-resolution imaging of energy transfer by intensity-based STED-FRET. Nano Lett., 21, 2296-2303(2021).

    [11] Z. Luo et al. Structured illumination-based super-resolution live-cell quantitative FRET imaging. Photon. Res., 11, 887-896(2023).

    [12] Z. Liu et al. Optical section structured illumination-based Förster resonance energy transfer imaging. Cytometry A, 101, 264-272(2022).

    [13] A. Markwirth et al. Video-rate multi-color structured illumination microscopy with simultaneous real-time reconstruction. Nat. Commun., 10, 4315(2019).

    [14] S. Tu et al. Fast reconstruction algorithm for structured illumination microscopy. Opt. Lett., 45, 1567-1570(2020).

    [15] M. Müller et al. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun., 7, 10980(2016).

    [16] M. G. Gustafsson et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J., 94, 4957-4970(2008).

    [17] D. Li et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science, 349, aab3500(2015).

    [18] Y. Wu, H. Shroff. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Methods, 15, 1011-1019(2018).

    [19] J. Demmerle et al. Strategic and practical guidelines for successful structured illumination microscopy. Nat. Protoc., 12, 988-1010(2017).

    [20] J. Fan et al. A protocol for structured illumination microscopy with minimal reconstruction artifacts. Biophys. Rep., 5, 80-90(2019).

    [21] G. Wen et al. High-fidelity structured illumination microscopy by point-spread-function engineering. Light Sci. Appl., 10, 70(2021).

    [22] Z. Wang et al. Rapid, artifact-reduced, image reconstruction for super-resolution structured illumination microscopy. Innovation, 4, 100425(2023).

    [23] G. Wen et al. Frequency–spatial domain joint optimization for improving super-resolution images of nonlinear structured illumination microscopy. Opt. Lett., 46, 5842-5845(2021).

    [24] A. Lal, C. Shan, P. Xi. Structured illumination microscopy image reconstruction algorithm. IEEE J. Sel. Top. Quantum Electron., 22, 50-63(2016).

    [25] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [26] R. Heintzmann, C. G. Cremer. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc. SPIE, 3568, 185-196(1999).

    [27] C. Zhang et al. Automated E-FRET microscope for dynamical live-cell FRET imaging. J. Microsc., 274, 45-54(2019).

    [28] M. Ben-Johny, D. N. Yue, D. T. Yue. Detecting stoichiometry of macromolecular complexes in live cells using FRET. Nat. Commun., 7, 13709(2016).

    [29] F. Yang et al. Stoichiometry and regulation network of Bcl-2 family complexes quantified by live-cell FRET assay. Cell. Mol. Life Sci., 77, 2387-2406(2020).

    [30] H. Chen et al. Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys. J., 91, L39-L41(2006).

    [31] K. Chu et al. Image reconstruction for structured-illumination microscopy with low signal level. Opt. Express, 22, 8687-8702(2014).

    Zewei Luo, Guodong Zang, Ge Wu, Mengting Kong, Zhengfei Zhuang, Tongsheng Chen, "High-fidelity SIM reconstruction-based super-resolution quantitative FRET imaging," Adv. Photon. Nexus 2, 056008 (2023)
    Download Citation