• Acta Optica Sinica
  • Vol. 35, Issue 1, 117001 (2015)
Lü Tao1、2、3、*, Chen Fang1, and Zhang Wei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201535.0117001 Cite this Article Set citation alerts
    Lü Tao, Chen Fang, Zhang Wei. Preliminary Research of Subcutaneous Lipolysis Induced by Two Q-Switched Infrared Laser Pulses[J]. Acta Optica Sinica, 2015, 35(1): 117001 Copy Citation Text show less
    References

    [1] M G Berry, D Davies. Liposuction: A review of principles and techniques [J]. J Plast Reconstr Aesthet Surg, 2011, 64(8): 985-992.

    [2] Zhang Bin. Advances in liposuction technology [J]. Chinese Journal of Aesthetic Medicine, 2011, 20(9): 1483-1486.

    [3] R R Anderson, J A Parrish. Selective photothermolysis: Precise microsurgery by selective absorption of pulsed radiation [J]. Science, 1983, 220(4596): 524-527.

    [4] Zhang Jizhuang. Photo- Thermal Interactions of Laser Ablation and Selective Photothermolysis during Laser Treatments of Skin Diseases [D]. Beijing: Tsinghua University, 2009.

    [5] Xie Shusen, Gong Wei, Li Hui. Selective photothermolysis in biological tissue [J]. Laser & Optoelectronics Progress, 2004, 41(8): 48-51.

    [6] R R Anderson, R J Margolis, S Watenabe, et al.. Selective photothermolysis of cutaneous pigmentation by Q-switched Nd:YAG laser pulses at 1064, 532 and 355 nm [J]. J Invest Dermatol, 1989, 93(1): 28-32.

    [7] S R Reiken, S F Wolfort, F Berthiaume, et al.. Control of hypertrophic scar growth using selective photothermolysis [J]. Laser Surg Med, 1997, 21(1): 7-12.

    [8] J R Lloyd, M Mirkov. Selective photothermolysis of the sebaceous glands for acne treatment [J]. Laser Surg Med, 2002, 31(2): 115-120.

    [9] I K Rubin, W A Farinelli, A Doukas, et al.. Optimal wavelengths for vein-selective photothermolysis [J]. Laser Surg Med, 2012, 44(2): 152-157.

    [10] R A Weiss, K Beasley. Laser-assisted liposuction using a novel blend of lipid- and water-selective wavelengths [J]. Laser Surg Med, 2009, 41(10): 760-766.

    [11] R R Anderson, W Farinelli, H Laubach, et al.. Selective photothermolysis of lipid-rich tissues: A free electron laser study [J]. Laser Surg Med, 2006, 38(10): 913-919.

    [12] M Wanner, M Avram, D Gagnon, et al.. Effects of non-invasive, 1210 nm laser exposure on adipose tissue: Results of a human pilot study [J]. Laser Surg Med, 2009, 41(6): 401-407.

    [13] F H Sakamoto, A G Doukas, W A Farinelli, et al.. Selective photothermolysis to target sebaceous glands: Theoretical estimation of parameters and preliminary results using a free electron laser [J]. Laser Surg Med, 2012, 44(2): 175-183.

    [14] Z Rahman, H MacFalls, K Jiang, et al.. Fractional deep dermal ablation induces tissue tightening [J]. Laser Surg Med, 2009, 41(2): 78-86.

    [15] A Vogel, V Venugopalan. Mechanisms of pulsed laser ablation of biological tissues [J]. Chem Rev, 2003, 103(2): 577-644.

    [16] B M Hantash, V P Bedi, B Kapadia, et al.. In vivo histological evaluation of a novel ablative fractional resurfacing device [J]. Laser Surg Med, 2007, 39(2): 96-107.

    [17] D Manstein, G S Herron, R K Sink, et al.. Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury [J]. Laser Surg Med, 2004, 34(5): 426-438.

    [18] G B Altshuler, R R Anderson, D Manstein, et al.. Extended theory of selective photothermolysis [J]. Laser Surg Med, 2001, 29(5): 416-432.

    [19] B M Hantash, V P Bedi, K F Chan, et al.. Ex vivo histological characterization of a novel ablative fractional resurfacing device [J]. Laser Surg Med, 2007, 39(2): 87-95.

    [20] M Lapidoth, M E Yagima, L Mayumi. Novel use of erbium:YAG (2940 nm) laser for fractional ablative photothermolysis in the treatment of photodamaged facial skin: A pilot study [J]. Dermatol Surg, 2008, 34(8): 1048-1053.

    [21] A N Bashkatov, E A Genina, V I Kochubey, et al.. Optical properties of human skin subcutaneous and mucous tissues in the wavelength range from 400~2000 nm [J]. J Phys D, 2005, 38(15): 2543-2555.

    [22] A N Bashkatov, E A Genina, V I Kochubey, et al.. Optical properties of the subcutaneous adipose tissue in the spectral range 400~2500 nm [J]. Opt Spectrosc, 2005, 99(5): 836-842.

    [23] G B Altshuler, R R Anderson, D Manstein. Method and apparatus for the selective targeting of lipid-rich tissues [P]. Patent No. US 7060061 B2, USA, 2006. 6.

    [24] B Choi, A J Welch. Analysis of thermal relaxation during laser irradiation of tissue [J]. Laser Surg Med, 2001, 29(4): 351-359.

    [25] W M Irvine, J B Pollack. Infrared optical properties of water and ice spheres [J]. Icarus, 1968, 8: 324-360.

    [26] M L Ha. Fractional Laser Ablation of Cutaneous Tissue Using a Tunable CW and Gain-Switched Chromium-Doped Zine Chalcogenide IR Laser [D]. Lübeck: Lübeck University, 2012.

    Lü Tao, Chen Fang, Zhang Wei. Preliminary Research of Subcutaneous Lipolysis Induced by Two Q-Switched Infrared Laser Pulses[J]. Acta Optica Sinica, 2015, 35(1): 117001
    Download Citation