• Infrared and Laser Engineering
  • Vol. 46, Issue 11, 1103001 (2017)
Yasha Saxena1、*, Chulhong Kim2, and Yao Junjie1
Author Affiliations
  • 1Department of Biomedical Engineering, Duke University, Durham, USA
  • 2Departments of Creative IT Engineering and Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
  • show less
    DOI: 10.3788/irla201746.1103001 Cite this Article
    Yasha Saxena, Chulhong Kim, Yao Junjie. From bench to market: commercialization of photoacoustic imaging[J]. Infrared and Laser Engineering, 2017, 46(11): 1103001 Copy Citation Text show less
    References

    [1] Bell A G. Upon the production and reproduction of sound by light[J]. American Journal of Science, 1880, 20(118): 305-324.

    [2] Brody H. Medical imaging[J]. Nature, 2013. 502(7473): S81.

    [3] Cox B, Laufer J G, Arridge S R, et al. Quantitative spectroscopic photoacoustic imaging: a review[J]. Journal of Biomedical Optics, 2012, 17(6): 061202.

    [4] Greneur C L, Sagot B. Biomedical photoacoustic imaging patent landscape[R]. New York: Knowmade Company, 2015.

    [5] Taruttis A, Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications[J]. Nature Photonics, 2015, 9(4): 219-227.

    [6] Wang L H V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 2012, 335(6075): 1458-1462.

    [7] Yao J J, Wang L H V. Photoacoustic microscopy[J]. Laser & Photonics Reviews, 2013, 7(5): 758-778.

    [8] Zackrisson S, van de Ven S M W Y, Gambhir S S. Light in and sound out: emerging translational strategies for photoacoustic imaging[J]. Cancer Research, 2014, 74(4): 979-1004.

    [9] Wang L H, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 2016, 13(8): 627-638.

    [10] Vengerov M. An optical-acoustic method of gas analysis[J]. Nature, 1946, 158(4001): 28-29.

    [11] Michaels J E. Thermal impact-the mechanical response of solids to extreme electromagnetic radiation[J]. Planetary and Space Science, 1961, 7: 427-433.

    [12] White R M. Generation of elastic waves by transient surface heating[J]. Journal of Applied Physics, 1963, 34(12): 3559-3567.

    [13] Amar L, Bruna M, Velghe M, et al. On Detection of laser induced ultrasonic waves in human eye and elaboration of a theory on fundamental mechanism of vision[J]. Zeitschrift Fur Angewandte Mathematik Und Physik, 1965, 16(1): 182-183.

    [14] Kreuzer L B. Ultralow gas concentration infrared absorption spectroscopy[J]. Journal of Applied Physics, 1971, 42(7): 2934-2943.

    [15] Bowen T. Radiation-induced thermoacoustic soft-tissue imaging[J]. IEEE Transactions on Sonics and Ultrasonics, 1982, 29(3): 197737.

    [16] Rosencwaig A, Gersho A. Theory of the photoacoustic effect with solids[J]. Journal of Applied Physics, 1976, 47(1): 64-69.

    [17] Rosencwaig A. Photoacoustics and photoacoustic spectroscopy[M]. New York: Wiley, 1980.

    [18] Kruger R A, Liu P, Fang Y R, et al. Photoacoustic ultrasound(Paus)- reconstruction tomography[J]. Medical Physics, 1995, 22(10): 1605-1609.

    [19] Kruger R A, Liu P Y. Photoacoustic ultrasound-pulse production and detection in 0.5-percent Liposyn[J]. Medical Physics, 1994, 21(7): 1179-1184.

    [20] Kruger R A. Photoacoustic ultrasound[J]. Medical Physics, 1994, 21(1): 127-131.

    [21] Oraevsky A A, Esenaliev R O, Jacques S L, et al. Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers[C]//SPIE, 1995, 2389: 198-208.

    [22] Esenaliev R O, Oraevsky A A, Jacques S L, et al. Laser optoacoustic tomography for medical diagnostics: experiments with biological tissues[C]//SPIE, 1996, 2676: 10.1117/12, 238817.

    [23] Oraevsky A A, Jacques S L, Tittel F K. Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves[C]//SPIE, 1993, 1882: 86-101.

    [24] Waldner M J, Knieling F, Egger C, et al. Multispectral optoacoustic tomography in Crohn′s disease: noninvasive imaging of disease activity[J]. Gastroenterology, 2016, 151(2): 238-240.

    [25] Vionnet L, Tateau J, Schwarz M, et al. 24-MHz scanner for optoacoustic imaging of skin and burn. medical imaging[J]. IEEE Transactions on Medical Imaging, 2014, 33(2): 535-545.

    [26] Tzoumas S, Antonio N, Nikolaos C, et al. Effects of multispectral excitation on the sensitivity of molecular optoacoustic imaging[J]. Journal of Biophotonics, 2015, 8(8): 629-637.

    [27] Taruttis A, Morscher S, Burton N C, et al. Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs[J]. PLoS One, 2012, 7(1): e30491.

    [28] Stoffels I, Morscher S, Helfrich I, et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging[J]. Science Translational Medicine, 2015, 7(317): 317ra199.

    [29] Sela G, Lauri A, Deanben X L, et al. Functional optoacoustic neuro-tomography (FONT) for whole-brain monitoring of calcium indicators[J]. Quantitative Biology, 2015, arXiv: 1501.02450.

    [30] Razansky D, Baeten J, Ntziachristos V. Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT)[J]. Medical Physics, 2009, 36(3): 939-945.

    [31] Petrova E V, Oraevsky A A, Ermilov S A. Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring[J]. Applied Physics Letters, 2014, 105(9): 094103.

    [32] Oraevsky A A, Jacques S L, Tittel F K, et al. Lateral and z-axial resolution in laser optoacoustic imaging with ultrasonic transducers in optical tomography, photon migration, and spectroscopy of tissue and model media: theory, human studies, and instrumentation[C]//SPIE, 1995.

    [33] Nikitin S M, Khokhlova T D, Pelivanov I M. Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies[J]. Journal of Biomedical Optics, 2012, 17(6): 061214.

    [34] Herzog E, Taruttis A, Beziere N, et al. Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography[J]. Radiology, 2012, 263(2): 461-468.

    [35] Esenaliev R O, Oraevsky A A, Jacques S L, et al. Laser optoacoustic tomography for medical diagnostics: experiments with biological tissues. in biomedical sensing, imaging, and tracking technologies I[C]//SPIE, 1996, 2676: 238817.

    [36] Deliolanis N C, Ale A, Morscher S, et al. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: A performance overview[J]. Mol Imaging Biol, 2014, 16(5): 652-660.

    [37] Dean-Ben X L, Razansky D. Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography[J]. Light-Science & Applications, 2014, 3: e137.

    [38] Brecht H P, Su R, Fronheiser M, et al. Whole-body three-dimensional optoacoustic tomography system for small animals[J]. Journal of Biomedical Optics, 2009, 14(6): 064007.

    [39] Bost W, Stracke F, Wei B E C, et al. High frequency optoacoustic microscopy[C]//IEEE Eng Med Biol Soc, 2009, 2009: 5883-5886.

    [40] Wang X D, Pang Y, Ku G, et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain[J]. Nature Biotechnology, 2003, 21(7): 803-806.

    [41] Zhang H F, Maslov K, Stoica G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnology, 2006, 24(7): 848-851.

    [42] de la Zerda A, Lius Z, Bodapati S, et al. Carbon nanotubes as photoacoustic molecular imaging agents in living mice[J]. Nature Nanotechnology, 2008, 3(9): 557-562.

    [43] Kim J W, Galanzha E I, Shashkov E V, et al. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents[J]. Nature Nanotechnology, 2009, 4(10): 688-694.

    [44] Razansky D, Distel M, Vinegoni C, et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo[J]. Nature Photonics, 2009, 3(7): 412-417.

    [45] Yang J M, Favazza C, Chen R, et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo[J]. Nature Medicine, 2012, 18(8): 1297-1302.

    [46] Pu K Y, Shuhendler A J, Jokerst J V, et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice[J]. Nature Nanotechnology, 2014, 9(3): 233-239.

    [47] Jathoul A P, Laufer J, Ogulade O, et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter[J]. Nature Photonics, 2015, 9(4): 239-246.

    [48] Yao J, Wang L, Yang J M, et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action[J]. Nature methods, 2015, 12(5): 407-410.

    [49] Yao J, Kaberniuk A A, Li L, et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe[J]. Nature Methods, 2016, 13(1): 67-73.

    [50] Manohar S, Razansky D. Photoacoustics: a historical review[J]. Advances in Optics and Photonics, 2016, 8(4): 586-617.

    [51] Jansen K, Van A F, Beusekm van H M, et al. Intravascular photoacoustic imaging of human coronary atherosclerosis[J]. Optics Letters, 2011, 36(5): 597-599.

    [52] Xia J, Chatni M R, Maslov K, et al. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo[J]. Journal of Biomedical Optics, 2012, 17(5): 050506.

    [53] Xia J, Yao J, Wang L V. Photoacoustic tomography: principles and advances[J]. Electromagn Waves(Camb), 2014, 147: 1-22.

    [54] Mallidi S, Watanabe K, Timerman D, et al. Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging[J]. Theranostics, 2015, 5(3): 289-301.

    [55] Fakhrejahani E, Torri M, Kitai T, et al. Clinical report on the first prototype of a photoacoustic tomography system with dual illumination for breast cancer imaging[J]. PLoS One, 2015, 10(10): e0139113.

    [56] Kruger R A, Lam R B, Reineche D R, et al. Photoacoustic angiography of the breast[J]. Medical Physics, 2010. 37(11): 6096-6100.

    [57] Heijblom M, Lam R B, Reinecke D R, et al. Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements[J]. Optics Express, 2012, 20(11): 11582-11597.

    [58] Xing W X, Wang L D, Maslov K, et al. Integrated optical-and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle[J]. Optics Letters, 2013, 38(1): 52-54.

    [59] Yoon T J, Cho Y S. Recent advances in photoacoustic endoscopy[J]. World J Gastrointest Endosc, 2013, 5(11): 534-539.

    [60] Wang P, Ma T, Slipohenko M N, et al. High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser[J]. Sci Rep, 2014, 4: 6889.

    [61] Bohndiek S E, Bodapati S, Dominique van De Sompel, et al. Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments[J]. PLoS One, 2013, 8(9): e75533.

    [62] Mehrmohammadi M, Yoom S J, Yeager D, et al. Photoacoustic imaging for cancer detection and staging[J]. Curr Mol Imaging, 2013, 2(1): 89-105.

    [63] American national standard for the safe use of lasers[S]. New York: American National Standard Institute, 2007.

    [64] Shigeta Y, Agano T, Sato N, et al. Detection of ICG at low concentrations by photoacoustic imaging system using LED light source[C]//SPIE, 2017: 100644x: doi 10.1117/12.2251678.

    [65] Agano T, Sato N. Photoacoustic imaging system using LED light source[C]//2016 Conference on Lasers and Electro-Optics (Cleo), 2016: ATh3N.5.

    [66] Zhang Y, Jeon M, Rich L J, et al. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines[J]. Nature Nanotechnology, 2014. 9(8): 631-638.

    [67] Talukdar Y, Avti P, Sun J, et al. Multimodal ultrasound-photoacoustic imaging of tissue engineering scaffolds and blood oxygen saturation in and around the scaffolds[J]. Tissue Engineering Part C, Methods, 2014, 20(5): 440-449.

    [68] Song W, Wei Q, Liu T, et al. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform[J]. Journal of Biomedical Optics, 2012, 17(6): 061206.

    [69] Kim J, Lee D, Jung U, et al. Photoacoustic imaging platforms for multimodal imaging[J]. Ultrasonography, 2015, 34(2): 88-97.

    [70] Akers W J, Edwards W B, Kim C, et al. Multimodal sentinel lymph node mapping with single-photon emission computed tomography(SPECT)/computed tomography(CT) and photoacoustic tomography[J]. Translational Research, 2012, 159(3): 175-181.

    [71] Kim J, Park S, Jung Y, et al. Programmable real-time clinical photoacoustic and ultrasound imaging system[J]. Scientific Reports, 2016, 6: 35137.

    [72] Yao J, Xia J, Wang L V. Multiscale functional and molecular photoacoustic tomography[J]. Ultrasonic Imaging, 2016, 38(1): 44-62.

    [73] Wilson K E, Wang T Y, Willmann J K. Acoustic and photoacoustic molecular imaging of cancer[J]. Journal of Nuclear Medicine, 2013, 54(11): 1851-1854.

    [74] Li M, Oh Jung-Tack, Xie Xueyi, et al. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography[J]. Proceedings of the IEEE, 2008, 96(3): 481-489.

    [75] Levi J, Kothapalli S R, Bohndiek S, et al. Molecular photoacoustic imaging of follicular thyroid carcinoma[J]. Clinical Cancer Research, 2013, 19(6): 1494-1502.

    [76] Kircher M F, Adam de la Zerda, Jess V Jokerst, et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle[J]. Nature Medicine, 2012, 18(5): 829-U235.

    [77] Kim C, Favazza C, Wang L V. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths[J]. Chem Rev, 2010, 110(5): 2756-2782.

    [78] de la Zerda A, Kim J-W, Galanzha E, et al. Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics[J]. Contrast Media & Molecular Imaging, 2011, 6(5): 346-369.

    [79] Ray A, Wang X D, Lee Y, et al. Targeted blue nanoparticles as photoacoustic contrast agent for brain tumor delineation[J]. Nano Research, 2011, 4(11): 1163-1173.

    [80] Galanzha E I, Nedosekin D A, Sarimollaoglu M, et al. Photoacoustic and photothermal cytometry using photoswitchable proteins and nanoparticles with ultrasharp resonances[J]. Journal of Biophotonics, 2013, 8(1): 81-93.

    [81] Brannon-Peppas L, Blanchette J O. Nanoparticle and targeted systems for cancer therapy[J]. Adv Drug Deliv Rev, 2004, 56(11): 1649-1659.

    [82] Zhang Y S, Wang Y, Wan L D, et al. Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy[J]. Theranostics, 2013, 3(8): 532-543.

    [83] Danielli A, Maslov K, Garcia-Uribe A, et al. Label-free photoacoustic nanoscopy[J]. Journal of Biomedical Optics, 2014, 19(8): 086006.

    CLP Journals

    [1] Zhenhui Zhang, Erqi Wang, Yujiao Shi. Applications of photoacoustic technology in brain tissue imaging (invited)[J]. Infrared and Laser Engineering, 2022, 51(11): 20220541

    Yasha Saxena, Chulhong Kim, Yao Junjie. From bench to market: commercialization of photoacoustic imaging[J]. Infrared and Laser Engineering, 2017, 46(11): 1103001
    Download Citation