• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 6, 673 (2018)
YUAN Pei1、2, WANG Yue1、*, WU Yuan-Da1、2, LIU Li-Jie1、2, An Jun-Ming1、2, and HU Xiong-Wei1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.06.006 Cite this Article
    YUAN Pei, WANG Yue, WU Yuan-Da, LIU Li-Jie, An Jun-Ming, HU Xiong-Wei. 25-channel 200 GHz AWG based on SOI ridge waveguides[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 673 Copy Citation Text show less
    References

    [1] Cheng B, Li C, Liu Z, et al. Research progress of Si-based germanium materials and devices [J]. J. Semicond., 2016, 37(8): 081001.

    [2] Feilchenfeld N B, Nummy K, Barwicz T, et al. Silicon photonics and challenges for fabrication [C]. Proceedings of SPIE. 2017, 10149: 101490D.

    [3] Zhou Z, Wang X, Yi H, et al. Silicon photonics for advanced optical communication systems. [J]. Proceedings of SPIE. 2013, 8630: 863014.

    [4] Ren B, Hou Y, Liang Y. Research progress of Ⅲ-Ⅴ laser bonding to Si [J]. J. Semicond., 2016, 37(12): 124001.

    [5] Song B, Stagarescu C, Ristic S, et al. 3D integrated hybrid silicon laser [J]. Opt. Exp., 2016, 24(10): 10435-10444 .

    [6] Xiao J-B, Li W L, Xia S S, et al. Full-vectorial analysis of the directional couplers in vertical multiple-slotted silicon wires with trapezoidal cross-section [J]. Journal of infrared and millimeter waves. 2012, 31(5): 437-440.

    [7] Spott A, Peters J, Davenport M L, et al. Quantum cascade laser on silicon [J]. Optica, 2016, 3(5), 545-551.

    [8] Wu W, Cheng B, Zhang J, et al. High gain-bandwidth product Ge/Si tunneling avalanche photodiode with high-frequency tunneling effect [J]. J. Semicond., 2017, 38(11): 114003.

    [9] Shin M J, Ban Y, Yu B M, et al. Parametric characterization of self-heating in depletion-type Si micro-ring modulators [J]. IEEE Journal of selected topics in quantum electronics. 2016, 22(6): 3400207.

    [10] Wang Z, Gao Y L, Kashi A S, et al. Silicon microring modulator for dispersion uncompensated transmission applications [J]. Journal of Lightwave Technology., 2016, 34(16), 3675-3681.

    [11] Zhao Z, Liu J, Liu Y, et al. High-speed photodetectors in optical communication system [J]. J. Semicond., 2017, 38(12):121001.

    [12] Fang Q, Li F, Liu Y L. Fabrication of arrayed waveguide grating based on SOI material [J]. Journal of infrared and millimeter waves. 2005, 24(2):143-146.

    [13] Ye T, Fu Y, Qiao L, et al. Low-crosstalk Si arrayed waveguide grating with parabolic tapers [J]. Opt. Exp., 2014, 22(26): 31899-31906.

    [14] Park J, Joo J, Park H, et al. Improved performance of a silicon arrayed waveguide grating by reduction of higher order mode generation near the boundary of a star coupler [J]. Proceeding of SPIE. 2015, 9367: 936705.

    [15] Li H, Bai Y, Dong X, et al. Practical fabrication and analysis of an optimized compact eight-channel silicon arrayed-waveguide grating [J]. Optical Engineering. 2013, 52(6):064602.

    [16] Kim D J, Lee J M, Song J H, et al. Crosstalk reduction in a shallow-etched silicon nanowire AWG [J]. IEEE Photonics Technology Letters. 2008, 20(19):1615-1617.

    [17] Pathak S, Vanslembrouck M, Dumon P, et al. Compact SOI-based polarization diversity wavelength de-multiplexer circuit using two symmetric AWGs [J]. Opt. Exp., 2012, 20(26):B493-B500.

    [18] Adar R, Henry C H, Dragone C, et al. Broad-band array multiplexers made with silica waceguides on silicon[J]. J. Lightwave Technol., 1993, 11(2):212-219.

    [19] Yuan P, Wang Y, Wu Y, et al. Design and fabrication of wavelength tunable AWGs based on the thermo-optic effect [J]. Chin. Opt. Lett., 2018, 16(1):010601.

    YUAN Pei, WANG Yue, WU Yuan-Da, LIU Li-Jie, An Jun-Ming, HU Xiong-Wei. 25-channel 200 GHz AWG based on SOI ridge waveguides[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 673
    Download Citation