• Laser & Optoelectronics Progress
  • Vol. 53, Issue 8, 80004 (2016)
Mao Jiubing*, Yang Wei, Feng Xiaojuan, and Li Jianping
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.080004 Cite this Article Set citation alerts
    Mao Jiubing, Yang Wei, Feng Xiaojuan, Li Jianping. Research Status of Flexible Electro-Optical Circuit for Interconnection[J]. Laser & Optoelectronics Progress, 2016, 53(8): 80004 Copy Citation Text show less
    References

    [1] Yang Wei, Mao Jiubing, Feng Xiaojuan. The research status and developing tread for waveguide-based board-level optical interconnects technology[J]. Laser & Optoelectronics Progress, 2016, 53(6): 060004.

    [2] Cheng Huiming. Advanced electronic manufacturing technology[M]. Beijing: National Defense Industry Press, 2008: 270-278.

    [3] Dangel R, Horst F, Meier N, et al. Polymer waveguide based optical backplanes and electro-optical assembly technology for computing applications[C]. IEEE Optical Interconnects Conference, 2013, 8075: 124-125.

    [4] Moisel J, Huber H P, Guttmann J, et al. Optical backplane[C]. 27th European Conference on Optical Communication, 2001, 3: 254-256.

    [5] Choi C, Lin L, Liu Y J, et al. Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects[J]. Journal of Lightwave Technology, 2004, 22(9): 2168-2176.

    [6] Wang X L, Jiang W, Wang L, et al. Fully embedded board-level optical interconnects from waveguide fabrication to device integration[J]. Journal of Lightwave Technology, 2008, 26(2): 243-250.

    [7] Hamasaki H, Furuyama H, Numata H, et al. A 100 Gbps flexible optoelectronic interconnection with multi-mode optical waveguide circuits[C]. European Conference & Ehxibition of Optical Communication, 2007, 1: 1-2.

    [8] Shibata T, Takahashi A. Flexible opto-electronic circuit board for in-device interconnection[C]. Conference of Electronic Components & Technology, 2008: 261-267.

    [9] Lee W J, Hwang S H, Lim J W, et al. Optical interconnection module integrated on a flexible optical/electrical hybrid printed circuit board[C]. Conference of Electronic Components & Technology, 2009: 1802-1805.

    [10] Lee W J, Lim J W, Hwang S H, et al. Polymeric waveguide film with embedded mirrors for flexible optical interconnection[C]. Conference of Optoelectronics & Communications, 2009: 1-2.

    [11] Hwang S H, Lee W J, Kim M J, et al. Ultra-thin and low-power optical interconnect module based on a flexible optical printed circuit board[J]. Optical Engineering, 2012, 51(7): 075402.

    [12] Shiraishi T, Yagisawa T, Ikeuchi T, et al. Cost-effective on-board optical interconnection using waveguide sheet with flexible printed circuit optical engine[C]. Optical Fiber Communication Conference & Exposition, 2011, 19(24): 1-3.

    [13] Yagisawa T, Shiraishi T, Tsunoda Y, et al. 200-Gb/s compact card-edge optical transceiver utilizing cost-effective FPC-based module for optical interconnect[C]. European Conference & Exhibition on Optical Communication, 2012: 1-3.

    [14] Shiraishi T, Yagisawa T, Ikeuchi T, et al. Cost-effective low-loss flexible optical engine with microlens-imprinted film for high-speed on-board optical interconnection[C]. IEEE Conference of Electronic Components & Technology, 2012: 1505-1510.

    [15] Yagisawa T, Shiraishi T, Ikeuchi T, et al. FPC-based compact 25-Gb/s optical transceiver module for optical interconnect utilizing novel high-speed FPC connector[C]. IEEE Conference of Electronic Components & Technology, 2013: 274-279.

    [16] Tanaka K, Ide S, Tsunoda Y, et al. High-bandwidth optical interconnect technologies for next-generation server systems[J]. IEEE Micro, 2013, 33(1): 6-13.

    [17] Yagisawa T, Shiraishi T, Sugawara M, et al. 40-Gb/s cost-effective FPC-based optical engine for optical interconnect using novel high-speed FPC connector[C]. European Conference & Exhibition on Optical Communication, 2013: 1-3.

    [18] Yagisawa T, Sugawara M, Shiraishi T, et al. Novel packaging technologies for FPC-based optical transceiver for high-speed optical interconnect[C]. IEEE CPMT Symposium Japan, 2015: 134-137.

    [19] Dangel R, Horst F, Jubin D, et al. Development of versatile polymer waveguide flex technology for use in optical interconnects[J]. Journal of Lightwave Technology, 2013, 31(24): 3915-3926.

    [20] Keller C, Shao Z H, Wakazono Y, et al. Planar assembled flexible interconnect link with hybrid optical/electrical data transmission for mobile device applications[C]. IEEE Electronic Components and Technology Conference, 2011: 823-828.

    [21] Missinne J, Van Hoe B, Bosman E, et al. Compact coupling and packaging concepts for flexible and stretchable polymer optical interconnects[C]. IEEE Optical Interconnects Conference, 2012: 129-130.

    [22] Immonen M, Wu J, Yan H J, et al. Electro-optical backplane demonstrator with multimode polymer waveguides for board-to-board interconnects[C]. Electronics System-Integration Technology Conference, 2014: 1-6.

    [23] Hu J J, Li L, Lin H T, et al. A fully-integrated flexible photonic platform for chip-to-chip optical interconnects[J]. Journal of Lightwave Technology, 2013, 31(24): 4080-4086.

    [24] Shen L C, Lo W C, Chang H H, et al. Flexible electronic-optical local bus modules to the board-to-board, board-to-chip, and chip-to-chip optical interconnection[C]. Electronic Components & Technology Conference, 2005, 1: 1039-1043.

    [25] Chang H H, Lo W C, Shen L C, et al. Interconnection of flexible electronic-optical circuit board module[C]. International Conference of Microsystem, Packaging, Assembly, 2006: 1-4.

    [26] Wang Gangzhi, Huang Haoyi. Research on optical backplane applied to Avionics system[J]. Avionics Technology, 2008, 39(4): 44-47.

    [27] Han Shuangli, Zhao Shanghong, Di Xiang. Integrated avionics in new fighter airplane and its high speed interconnection technology[J]. Laser & Optoelectronics Progress, 2008, 45(3): 50-55.

    [28] Zhan Wentao, Sun Jingguo, Xie Wentao, et al. A design and appliance of optic backplane applied in airborne avionics system[J]. Computer Measurement & Control, 2014, 22(3): 945-947, 955.

    [29] Yi Yunji. The integrated technologies for polymer planar optical waveguide devices[D]. Changchun: Jilin University, 2012: 53-55.

    Mao Jiubing, Yang Wei, Feng Xiaojuan, Li Jianping. Research Status of Flexible Electro-Optical Circuit for Interconnection[J]. Laser & Optoelectronics Progress, 2016, 53(8): 80004
    Download Citation