• Advanced Photonics
  • Vol. 6, Issue 6, 066007 (2024)
Pascal Dreher1,†, Alexander Neuhaus1, David Janoschka1, Alexandra Rödl1..., Tim Colin Meiler2, Bettina Frank2, Timothy J. Davis1,2,3,*, Harald Giessen2,* and Frank Meyer zu Heringdorf1,*|Show fewer author(s)
Author Affiliations
  • 1University of Duisburg-Essen, Faculty of Physics and CENIDE, Duisburg-Essen, Duisburg, Germany
  • 2University of Stuttgart, 4th Physics Institute and Research Center SCoPE, Stuttgart, Germany
  • 3University of Melbourne, School of Physics, Parkville, Victoria, Australia
  • show less
    DOI: 10.1117/1.AP.6.6.066007 Cite this Article Set citation alerts
    Pascal Dreher, Alexander Neuhaus, David Janoschka, Alexandra Rödl, Tim Colin Meiler, Bettina Frank, Timothy J. Davis, Harald Giessen, Frank Meyer zu Heringdorf, "Spatiotemporal topology of plasmonic spin meron pairs revealed by polarimetric photo-emission microscopy," Adv. Photon. 6, 066007 (2024) Copy Citation Text show less
    References

    [1] J. E. Avron, D. Osadchy, R. Seiler. A topological look at the quantum hall effect. Phys. Today, 56, 38-42(2003).

    [2] N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol., 8, 899-911(2013).

    [3] K. Everschor-Sitte et al. Perspective: magnetic skyrmions—overview of recent progress in an active research field. J. Appl. Phys., 124, 240901(2018).

    [4] N. Romming et al. Writing and deleting single magnetic skyrmions. Science, 341, 636-639(2013).

    [5] R. Knapman et al. Current-induced h-shaped-skyrmion creation and their dynamics in the helical phase. J. Phys. D: Appl. Phys., 54, 404003(2021).

    [6] M. Ezawa. Compact merons and skyrmions in thin chiral magnetic films. Phys. Rev. B, 83, 100408(2011).

    [7] N. Gao et al. Creation and annihilation of topological meron pairs in in-plane magnetized films. Nat. Commun., 10, 5603(2019).

    [8] T. Shinjo et al. Magnetic vortex core observation in circular dots of permalloy. Science, 289, 930-932(2000).

    [9] C. Phatak, A. Petford-Long, O. Heinonen. Direct observation of unconventional topological spin structure in coupled magnetic discs. Phys. Rev. Lett., 108, 067205(2012).

    [10] X. Yu et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature, 564, 95-98(2018).

    [11] Y. Shen et al. Optical skyrmions and other topological quasiparticles of light. Nat. Photonics, 18, 15-25(2024).

    [12] M. Król et al. Observation of second-order meron polarization textures in optical microcavities. Optica, 8, 255-261(2021).

    [13] L. Xiong et al. Polaritonic vortices with a half-integer charge. Nano Lett., 21, 9256-9261(2021).

    [14] Y. Dai et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588, 616-619(2020).

    [15] A. Ghosh et al. A topological lattice of plasmonic merons. Appl. Phys. Rev., 8, 041413(2021).

    [16] D. Janoschka et al. Implementation and operation of a fiber-coupled CMOS detector in a low energy electron microscope. Ultramicroscopy, 221, 113180(2021).

    [17] P. Kahl et al. Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons. Plasmonics, 9, 1401-1407(2014).

    [18] B. Radha et al. Movable Au microplates as fluorescence enhancing substrates for live cells. Nano Res., 3, 738-747(2010).

    [19] B. Göbel, I. Mertig, O. A. Tretiakov. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep., 895, 1-28(2021).

    [20] T. Fösel, V. Peano, F. Marquardt. L lines, C points and Chern numbers: understanding band structure topology using polarization fields. New J. Phys., 19, 115013(2017).

    [21] M. R. Dennis, K. O’Holleran, M. J. Padgett. Chapter 5 singular optics: optical vortices and polarization singularities. Prog. Opt., 53, 293-363(2009).

    [22] D. S. Simon. Tying Light in Knots, 2053-2571(2018).

    [23] J. Nye, J. Hajnal. The wave structure of monochromatic electromagnetic radiation. Proc. R. Soc. Lond. A, 409, 21-36(1987).

    [24] M. Berry, M. Dennis. Polarisation singularities in isotropic random vector waves. Proc. R. Soc. Lond. A, 457, 141-155(2001).

    [25] T. Davis et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science, 368, eaba6415(2020).

    [26] D. Podbiel et al. Imaging the nonlinear plasmoemission dynamics of electrons from strong plasmonic fields. Nano Lett., 17, 6569-6574(2017).

    [27] P. Dreher et al. Momentum space separation of quantum path interferences between photons and surface plasmon polaritons in nonlinear photoemission microscopy. Nanophotonics, 13, 1593-1602(2024).

    [28] S. M. Barnett. Rotation of electromagnetic fields and the nature of optical angular momentum. J. Mod. Opt., 57, 1339-1343(2010).

    [29] T. Davis et al. Subfemtosecond and nanometer plasmon dynamics with photoelectron microscopy: theory and efficient simulations. ACS Photonics, 4, 2461-2469(2017).

    [30] X. Lu et al. Meron-like topological spin defects in monolayer CrCl3. Nat. Commun., 11, 4724(2020).

    [31] J. Nye. Lines of circular polarization in electromagnetic wave fields. Proc. R. Soc. Lond. A, 389, 279-290(1983).

    [32] N. Mermin. The topological theory of defects in ordered media. Rev. Mod. Phys., 51, 591-648(1979).

    [33] J. C. Maxwell. L. On hills and dales. Lond. Edinburgh Dublin Philos. Mag. J. Sci., 40, 421-427(1870).

    [34] Z. Vardeny, A. Nahata, A. Agrawal. Optics of photonic quasicrystals. Nat. Photonics, 7, 177-187(2013).

    [35] L. Du et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    [36] B. Frank et al. Short-range surface plasmonics: localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface. Sci. Adv., 3, e1700721(2017).

    [37] Y. Shen et al. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space. Nat. Commun., 12, 5891(2021).

    [38] H. Xue, Y. Yang, B. Zhang. Topological valley photonics: physics and device applications. Adv. Photonics Res., 2, 2100013(2021).

    [39] M. U. Wehner, M. H. Ulm, M. Wegener. Scanning interferometer stabilized by use of pancharatnam’s phase. Opt. Lett., 22, 1455-1457(1997).

    [40] F. J. Meyer zu Heringdorf et al. Spatio-temporal imaging of surface plasmon polaritons in two photon photoemission microscopy. Proc. SPIE, 9921, 992110(2016).

    [41] J. S. Li et al. An advanced phase retrieval algorithm in N-step phase-shifting interferometry with unknown phase shifts. Sci. Rep., 7, 44307(2017).

    [42] A. Kubo, N. Pontius, H. Petek. Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett., 7, 470-475(2007).

    Pascal Dreher, Alexander Neuhaus, David Janoschka, Alexandra Rödl, Tim Colin Meiler, Bettina Frank, Timothy J. Davis, Harald Giessen, Frank Meyer zu Heringdorf, "Spatiotemporal topology of plasmonic spin meron pairs revealed by polarimetric photo-emission microscopy," Adv. Photon. 6, 066007 (2024)
    Download Citation