• Opto-Electronic Engineering
  • Vol. 47, Issue 6, 190388 (2020)
Liao Qinkai1、2、*, Lin Shanling1、2, Lin Zhixian1、2, Chen Zheliang1、2, Li Tiantian1、2, and Tang Biao3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190388 Cite this Article
    Liao Qinkai, Lin Shanling, Lin Zhixian, Chen Zheliang, Li Tiantian, Tang Biao. Electrowetting defect image segmentation based on improved Otsu method[J]. Opto-Electronic Engineering, 2020, 47(6): 190388 Copy Citation Text show less
    References

    [1] Hayes R A, Feenstra B J. Video-speed electronic paper based on electrowetting[J]. Nature, 2003, 425(6956): 383–385.

         Hayes R A, Feenstra B J. Video-speed electronic paper based on electrowetting[J]. Nature, 2003, 425(6956): 383–385.

    [2] Overton G. ELECTRONIC PAPER DISPLAYS: Kindles and cuttlefish: Biomimetics informs e-paper displays[J]. Laser Focus World, 2012, 48(12): 16.

         Overton G. ELECTRONIC PAPER DISPLAYS: Kindles and cuttlefish: Biomimetics informs e-paper displays[J]. Laser Focus World, 2012, 48(12): 16.

    [3] Hayes R A, Feenstra B J, Camps I G J, et al. 52.1: a high brightness colour 160 PPI reflective display technology based on electrowetting[J]. SID Symposium Digest of Technical Pa-pers, 2004, 35(1): 1412–1415.

         Hayes R A, Feenstra B J, Camps I G J, et al. 52.1: a high brightness colour 160 PPI reflective display technology based on electrowetting[J]. SID Symposium Digest of Technical Pa-pers, 2004, 35(1): 1412–1415.

    [4] Cheng W Y, Lo KL, Chang Y P, et al. 37.1: novel development of large-sized electrowetting display[J]. SID Symposium Digest of Technical Papers, 2008, 39(1): 526–529.

         Cheng W Y, Lo KL, Chang Y P, et al. 37.1: novel development of large-sized electrowetting display[J]. SID Symposium Digest of Technical Papers, 2008, 39(1): 526–529.

    [5] Kuo S W, Chang Y P, Cheng W Y, et al. 34.3: novel develop-ment of multi-color electrowetting display[J]. SID Symposium Digest of Technical Papers, 2009, 40(1): 483–486.

         Kuo S W, Chang Y P, Cheng W Y, et al. 34.3: novel develop-ment of multi-color electrowetting display[J]. SID Symposium Digest of Technical Papers, 2009, 40(1): 483–486.

    [6] Schultz A, Heikenfeld J, Kang H S, et al. 1000:1 contrast ratio transmissive electrowetting displays[J]. Journal of Display Technology, 2011, 7(11): 583–585.

         Schultz A, Heikenfeld J, Kang H S, et al. 1000:1 contrast ratio transmissive electrowetting displays[J]. Journal of Display Technology, 2011, 7(11): 583–585.

    [7] Chang R L J, Liu PW, Wu C Y, et al. 54.2: reliable and high performance transparent electrowetting displays[J]. SID Sym-posium Digest of Technical Papers, 2014, 45(1): 785–788.

         Chang R L J, Liu PW, Wu C Y, et al. 54.2: reliable and high performance transparent electrowetting displays[J]. SID Sym-posium Digest of Technical Papers, 2014, 45(1): 785–788.

    [8] Zhang X M, Bai P F, Hayes R A, et al. Novel driving methods for manipulating oil motion in electrofluidic display pixels[J]. Journal of Display Technology, 2016, 12(2): 200–205.

         Zhang X M, Bai P F, Hayes R A, et al. Novel driving methods for manipulating oil motion in electrofluidic display pixels[J]. Journal of Display Technology, 2016, 12(2): 200–205.

    [10] Qian M Y, Lin S L, Zeng S Y, et al. Real-time dynamic driving system implementation of electrowetting display[J]. Op-to-Electronic Engineering, 2019, 46(6): 180623.

         Qian M Y, Lin S L, Zeng S Y, et al. Real-time dynamic driving system implementation of electrowetting display[J]. Op-to-Electronic Engineering, 2019, 46(6): 180623.

    [11] Jin S Q, Ji C, Yan C C, et al. TFT-LCD mura defect detection using DCT and the dual-γ piecewise exponential transform[J]. Precision Engineering, 2018, 54: 371–378.

         Jin S Q, Ji C, Yan C C, et al. TFT-LCD mura defect detection using DCT and the dual-γ piecewise exponential transform[J]. Precision Engineering, 2018, 54: 371–378.

    [12] He J J, Xiao K, Liu C, et al. TFT-LCD circuit defects detection based on faster R-CNN[J]. Computer and Modernization, 2018(7): 33–38.

         He J J, Xiao K, Liu C, et al. TFT-LCD circuit defects detection based on faster R-CNN[J]. Computer and Modernization, 2018(7): 33–38.

    [13] Otsu N. A threshold selection method from gray-level histo-grams[J]. IEEE Transactions on Systems, Man, and Cybernet-ics, 1979, 9(1): 62–66.

         Otsu N. A threshold selection method from gray-level histo-grams[J]. IEEE Transactions on Systems, Man, and Cybernet-ics, 1979, 9(1): 62–66.

    [14] Ng H F. Automatic thresholding for defect detection[J]. Pattern Recognition Letters, 2006, 27(14): 1644–1649.

         Ng H F. Automatic thresholding for defect detection[J]. Pattern Recognition Letters, 2006, 27(14): 1644–1649.

    [15] Fan J L, Lei B. A modified valley-emphasis method for auto-matic thresholding[J]. Pattern Recognition Letters, 2012, 33(6): 703–708.

         Fan J L, Lei B. A modified valley-emphasis method for auto-matic thresholding[J]. Pattern Recognition Letters, 2012, 33(6): 703–708.

    [16] Zhang B, Ni K Z, Wang L J, et al. New algorithm of detecting optical surface imperfection based on background correction and image segmentation[J]. Acta Optica Sinica, 2016, 36(9): 0911004.

         Zhang B, Ni K Z, Wang L J, et al. New algorithm of detecting optical surface imperfection based on background correction and image segmentation[J]. Acta Optica Sinica, 2016, 36(9): 0911004.

    [17] Yuan X C, Lu W S, Peng Q J. An improved Otsu method using the weighted object variance for defect detection[J]. Applied Surface Science, 2015, 349: 472–484.

         Yuan X C, Lu W S, Peng Q J. An improved Otsu method using the weighted object variance for defect detection[J]. Applied Surface Science, 2015, 349: 472–484.

    [18] Truong M T N, Kim S. Automatic image thresholding using Otsu’s method and entropy weighting scheme for surface defect detection[J]. Soft Computing, 2018, 22(13): 4197–4203.

         Truong M T N, Kim S. Automatic image thresholding using Otsu’s method and entropy weighting scheme for surface defect detection[J]. Soft Computing, 2018, 22(13): 4197–4203.

    [19] Liao P S, Chen T S, Chung P C. A fast algorithm for multilevel thresholding[J]. Journal of Information Science and Engineering, 2001, 17(5): 713–727.

         Liao P S, Chen T S, Chung P C. A fast algorithm for multilevel thresholding[J]. Journal of Information Science and Engineering, 2001, 17(5): 713–727.

    [20] Yasnoff W A, Mui J K, Bacus J W. Error measures for scene segmentation[J]. Pattern Recognition, 1977, 9(4): 217–231.

         Yasnoff W A, Mui J K, Bacus J W. Error measures for scene segmentation[J]. Pattern Recognition, 1977, 9(4): 217–231.

    Liao Qinkai, Lin Shanling, Lin Zhixian, Chen Zheliang, Li Tiantian, Tang Biao. Electrowetting defect image segmentation based on improved Otsu method[J]. Opto-Electronic Engineering, 2020, 47(6): 190388
    Download Citation