• Advanced Photonics
  • Vol. 3, Issue 1, 014002 (2021)
Dong Mao1, Yang Zheng1, Chao Zeng1, Hua Lu1, Cong Wang2, Han Zhang2, Wending Zhang1、*, Ting Mei1, and Jianlin Zhao1
Author Affiliations
  • 1Northwestern Polytechnical University, School of Physical Science and Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, Xi’an, China
  • 2Shenzhen University, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen, China
  • show less
    DOI: 10.1117/1.AP.3.1.014002 Cite this Article Set citation alerts
    Dong Mao, Yang Zheng, Chao Zeng, Hua Lu, Cong Wang, Han Zhang, Wending Zhang, Ting Mei, Jianlin Zhao. Generation of polarization and phase singular beams in fibers and fiber lasers[J]. Advanced Photonics, 2021, 3(1): 014002 Copy Citation Text show less
    References

    [1] N. M. Litchinitser. Structured light meets structured matter. Science, 337, 1054-1055(2012).

    [2] A. Forbes. Structured light from lasers. Laser Photonics Rev., 13, 1900140(2019).

    [3] D. Cozzolino et al. Air-core fiber distribution of hybrid vector vortex-polarization entangled states. Adv. Photonics, 3, 046005(2019).

    [4] H. Sroor et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 14, 498-503(2020).

    [5] J. Liu et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters. Light-Sci. Appl., 7, 17148(2018).

    [6] J. Durnin, J. J. Miceli, J. H. Eberly. Comparison of Bessel and Gaussian beams. Opt. Lett., 13, 79-80(1988).

    [7] T. Wulle, S. Herminghaus. Nonlinear optics of Bessel beams. Phys. Rev. Lett., 70, 1401-1404(1993).

    [8] J. Li et al. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Adv. Funct. Mater., 25, 704-710(2015).

    [9] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 3, 1-57(2009).

    [10] S. Ramachandran, P. Kristensen. Optical vortices in fiber. Nanophotonics, 2, 455-474(2013).

    [11] Z. Chen, M. Segev. Self-trapping of an optical vortex by use of the bulk photovoltaic effect. Phys. Rev. Lett., 78, 2948-2951(1997).

    [12] B. Y. Wei et al. Vortex Airy beams directly generated via liquid crystal q-Airy-plates. Appl. Phys. Lett., 112, 121101(2018).

    [13] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [14] J. Wang. Data information transfer using complex optical fields: a review and perspective. Chin. Opt. Lett., 15, 030005(2017).

    [15] J. Liu et al. Multidimensional entanglement transport through single-mode fiber. Sci. Adv., 6, eaay0837(2020).

    [16] A. D. Wang et al. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Opt. Express, 26, 10038-10047(2018).

    [17] E. Wolf, M. R. Dennis, K. O’Holleran, M. J. Padgett. Singular optics: optical vortices and polarization singularities. Progress in Optics, 53, 293-363(2009).

    [18] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 40, 597-600(2015).

    [19] J. Durnin, J. Miceli, J. H. Eberly. Diffraction-free beams. Phys. Rev. Lett., 58, 1499-1501(1987).

    [20] G. A. Siviloglou et al. Observation of accelerating Airy beams. Phys. Rev. Lett., 99, 213901(2007).

    [21] Z. Y. Rong et al. Generation of arbitrary vector beams with cascaded liquid crystal spatial light modulators. Opt. Express, 22, 1636-1644(2014).

    [22] N. Zhou, J. Liu, J. Wang. Reconfigurable and tunable twisted light laser. Sci. Rep., 8, 11394(2018).

    [23] D. Pohl. Operation of a ruby laser in the purely transverse electric mode TE01. Appl. Phys. Lett., 20, 266-267(1972). https://doi.org/10.1063/1.1654142

    [24] F. Enderli, T. Feurer. Radially polarized mode-locked Nd:YAG laser. Opt. Lett., 34, 2030-2032(2009).

    [25] L. Li et al. High repetition rate Q-switched radially polarized laser with a graphene-based output coupler. Appl. Phys. Lett., 105, 221103(2014).

    [26] D. Naidoo et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics, 10, 327-332(2016).

    [27] Z. Qiao et al. Generating high-charge optical vortices directly from laser up to 288th order. Laser Photonics Rev., 12, 1800019(2018).

    [28] B. Huang et al. Controlled higher-order transverse mode conversion from a fiber laser by polarization manipulation. J. Opt., 20, 024016(2018).

    [29] X. L. Wang et al. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett., 32, 3549-3551(2007).

    [30] Y. W. Zhao et al. Intracavity cylindrical vector beam generation from all-PM Er-doped mode-locked fiber laser. Opt. Express, 27, 8808-8818(2019).

    [31] K. Huang et al. Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser. Opt. Lett., 43, 3933-3936(2018).

    [32] X. L. Wang et al. Optical orbital angular momentum from the curl of polarization. Phys. Rev. Lett., 105, 253602(2010).

    [33] J. Lin et al. Nanostructured holograms for broadband manipulation of vector beams. Nano Lett., 13, 4269-4274(2013).

    [34] B. Y. Wei et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals. Adv. Mater., 26, 1590-1595(2014).

    [35] A. O. Semkin, S. N. Sharangovich. Formation of optical vortices by controllable holographic diffraction structures in liquid crystal-photopolymer compositions. Ferroelectrics, 544, 104-111(2019).

    [36] P. Li et al. Generation of perfect vectorial vortex beams. Opt. Lett., 41, 2205-2208(2016).

    [37] E. Brasselet et al. Photopolymerized microscopic vortex beam generators: precise delivery of optical orbital angular momentum. Appl. Phys. Lett., 97, 211108(2010).

    [38] K. T. Gahagan, G. A. Swartzlander. Optical vortex trapping of particles. Opt. Lett., 21, 827-829(1996).

    [39] X. Cai et al. Integrated compact optical vortex beam emitters. Science, 338, 363-366(2012).

    [40] G. K. L. Wong et al. Excitation of orbital angular momentum resonances in helically twisted photonic crystal fiber. Science, 337, 446-449(2012).

    [41] Z. Li et al. Tripling the capacity of optical vortices by nonlinear metasurface. Laser Photonics Rev., 12, 1870049(2018).

    [42] A. Faßbender et al. Invited article: direct phase mapping of broadband Laguerre-Gaussian metasurfaces. APL Photonics, 3, 110803(2018).

    [43] S. Yu et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett., 108, 241901(2016).

    [44] Y. Yang et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett., 14, 1394-1399(2014).

    [45] J. Chen, C. H. Wan, Q. W. Zhan. Vectorial optical fields: recent advances and future prospects. Sci. Bull., 63, 54-74(2018).

    [46] L. Zou et al. Azimuthally polarized, passively Q-switched Yb-doped fiber laser. Opt. Commun., 355, 181-185(2015).

    [47] D. Lin et al. Radially polarized and passively Q-switched fiber laser. Opt. Lett., 35, 3574-3576(2010).

    [48] R. Dorn, S. Quabis, G. Leuchs. Sharper focus for a radially polarized light beam. Phys. Rev. Lett., 91, 233901(2003).

    [49] S. E. Skelton et al. Trapping volume control in optical tweezers using cylindrical vector beams. Opt. Lett., 38, 28-30(2013).

    [50] C. Min et al. Focused plasmonic trapping of metallic particles. Nat. Commun., 4, 2891(2013).

    [51] X. Xie et al. Harnessing the point-spread function for high-resolution far-field optical microscopy. Phys. Rev. Lett., 113, 263901(2014).

    [52] D. Liu et al. Enhanced sensitivity of the Z-scan technique on saturable absorbers using radially polarized beams. J. Appl. Phys., 119, 073103(2016).

    [53] L. Allen et al. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [54] P. Lochab, P. Senthilkumaran, K. Khare. Near-core structure of a propagating optical vortex. J. Opt. Soc. Am. A, 33, 2485-2490(2016).

    [55] W. D. Zhang et al. Generation of femtosecond optical vortex pulse in fiber based on an acoustically induced fiber grating. Opt. Lett., 42, 454-457(2017).

    [56] Q. Zhan. Properties of circularly polarized vortex beams. Opt. Lett., 31, 867-869(2006).

    [57] Y. Zhang et al. Unveiling the photonic spin Hall effect of freely propagating fan-shaped cylindrical vector vortex beams. Opt. Lett., 40, 4444-4447(2015).

    [58] B. J. McMorran et al. Electron vortex beams with high quanta of orbital angular momentum. Science, 331, 192-195(2011).

    [59] H. Ren et al. On-chip noninterference angular momentum multiplexing of broadband light. Science, 352, 805-809(2016).

    [60] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [61] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [62] L. S. Sui et al. Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain. Opt. Express, 24, 499-515(2016).

    [63] Z. Shen et al. Trapping and rotating of a metallic particle trimer with optical vortex. APL Photonics, 109, 241901(2016).

    [64] J. Ng, Z. Lin, C. T. Chan. Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett., 104, 103601(2010).

    [65] V. G. Shvedov et al. Giant optical manipulation. Phys. Rev. Lett., 105, 118103(2010).

    [66] L. Yang et al. Targeted single-cell therapeutics with magnetic tubular micromotor by one-step exposure of structured femtosecond optical vortices. Adv. Funct. Mater., 29, 1905745(2019).

    [67] K. Toyoda et al. Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett., 12, 3645-3649(2012).

    [68] J. Leach et al. Quantum correlations in optical angle–orbital angular momentum variables. Science, 329, 662-665(2010).

    [69] M. P. J. Lavery et al. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537-540(2013).

    [70] Y. W. Zhai et al. The radial Doppler effect of optical vortex beams induced by a surface with radially moving periodic structure. J. Opt., 21, 054002(2019).

    [71] M. D. Williams et al. Direct generation of optical vortices. Phys. Rev. A, 89, 033837(2014).

    [72] S. Franke-Arnold, L. Allen, M. Padgett. Advances in optical angular momentum. Laser Photonics Rev., 2, 299-313(2008).

    [73] Z. Hong, J. Zhang, B. W. Drinkwater. Observation of orbital angular momentum transfer from bessel-shaped acoustic vortices to diphasic liquid-microparticle mixtures. Phys. Rev. Lett., 114, 214301(2015).

    [74] A. Calabuig et al. Generation of programmable 3D optical vortex structures through devil’s vortex-lens arrays. Appl. Opt., 52, 5822-5829(2013).

    [75] H. Zhang et al. Dual-wavelength domain wall solitons in a fiber ring laser. Opt. Express, 19, 3525-3530(2011).

    [76] H. Zhang et al. Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers. Phy. Rev. B, 80, 052302(2009).

    [77] X. Li et al. Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers. Opt. Commun., 285, 1356-1361(2012).

    [78] L. M. Zhao et al. Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser. Opt. Lett., 32, 1806-1808(2007).

    [79] T. Wang et al. High-order mode lasing in all-FMF laser cavities. Photonics Res., 7, 42-49(2019).

    [80] W. Zhang et al. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt. Express, 24, 10376-10384(2016).

    [81] Y. Han et al. Orbital angular momentum transition of light using a cylindrical vector beam. Opt. Lett., 43, 2146-2149(2018).

    [82] N. Bozinovic et al. Control of orbital angular momentum of light with optical fibers. Opt. Lett., 37, 2451-2453(2012).

    [83] H. A. Haus, W. Huang. Coupled-mode theory. Proc. IEEE, 79, 1505-1518(1991).

    [84] P. Z. Dashti, F. Alhassen, H. P. Lee. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. Phys. Rev. Lett., 96, 043604(2006).

    [85] J. Dong, K. S. Chiang. Temperature-insensitive mode converters with CO2-laser written long-period fiber gratings. IEEE Photonics Technol. Lett., 27, 1006-1009(2015). https://doi.org/10.1109/LPT.2015.2405092

    [86] M. Feng et al. Ultra-broadband mode converter using cascading chirped long-period fiber grating. IEEE Photonics J., 11, 7105610(2019).

    [87] Y. C. Guo et al. More than 110-nm broadband mode converter based on dual-resonance coupling mechanism in long period fiber gratings. Opt. Laser Technol., 118, 8-12(2019).

    [88] Y. C. Guo et al. All-fiber mode-locked cylindrical vector beam laser using broadband long period grating. Laser Phys. Lett., 15, 085108(2018).

    [89] R. Chen et al. High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating. Opt. Lett., 43, 755-758(2018).

    [90] Y. Zhou et al. Resonance efficiency enhancement for cylindrical vector fiber laser with optically induced long period grating. Appl. Phys. Lett., 110, 161104(2017).

    [91] Y. Wang et al. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser Photonics Rev., 13, 1800313(2019).

    [92] X. Jiang et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx. Laser Photonics Rev., 12, 1700229(2018). https://doi.org/10.1002/lpor.201700229

    [93] D. Li et al. Polarization and thickness dependent absorption properties of black phosphorus: new saturable absorber for ultrafast pulse generation. Sci. Rep., 5, 15899(2015).

    [94] K. Y. Song et al. High performance fused-type mode-selective coupler using elliptical core two-mode fiber at 1550 nm. IEEE Photonics Technol. Lett., 14, 501-503(2002).

    [95] X. H. Wang et al. All-fiber cylindrical vector beams multiplexing through a mode-selective coupler. IEEE J. Quantum Electron., 55, 6800408(2019).

    [96] F. Wang et al. Method of generating femtosecond cylindrical vector beams using broadband mode converter. IEEE Photonics Technol. Lett., 29, 747-750(2017).

    [97] H. Wan et al. High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler. Opt. Express, 25, 11444-11451(2017).

    [98] Z. Zhang et al. Switchable dual-wavelength cylindrical vector beam generation from a passively mode-locked fiber laser based on carbon nanotubes. IEEE J. Sel. Top. Quantum., 24, 1100906(2018).

    [99] Y. Xu et al. Cylindrical vector beam fiber laser with a symmetric two-mode fiber coupler. Photonics Res., 7, 1479-1484(2019).

    [100] T. Wang et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler. J. Lightwave Technol., 35, 2161-2166(2017).

    [101] T. Wang et al. High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams. Opt. Express, 26, 11850-11858(2018).

    [102] Y. P. Huang et al. High-order mode Yb-doped fiber lasers based on mode-selective couplers. Opt. Express, 26, 19171-19181(2018).

    [103] M. Lipson. Guiding, modulating, and emitting light on silicon—challenges and opportunities. J. Lightwave Technol., 23, 4222-4238(2005).

    [104] T. Grosjean, D. Courjon, M. Spajer. An all-fiber device for generating radially and other polarized light beams. Opt. Commun., 203, 1-5(2002).

    [105] D. Mao et al. Ultrafast all-fiber based cylindrical-vector beam laser. Appl. Phys. Lett., 110, 021107(2017).

    [106] B. Sun et al. Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating. Opt. Lett., 37, 464-466(2012).

    [107] J. Lin et al. Tungsten disulphide based all fiber Q-switching cylindrical-vector beam generation. Appl. Phys. Lett., 107, 191108(2015).

    [108] B. Sun et al. Mode-locked all-fiber laser producing radially polarized rectangular pulses. Opt. Lett., 40, 1691-1694(2015).

    [109] Y. Zhou et al. Self-starting passively mode-locked all fiber laser based on carbon nanotubes with radially polarized emission. Photonics Res., 4, 327-330(2016).

    [110] T. Liu, S. P. Chen, J. Hou. Selective transverse mode operation of an all-fiber laser with a mode-selective fiber Bragg grating pair. Opt. Lett., 41, 5692-5695(2016).

    [111] S. Z. Yao et al. All-fiber single-longitudinal-mode narrow linewidth fiber ring laser with cylindrical vector beam output. Laser Phys. Lett., 15, 115107(2018).

    [112] H. X. Li et al. A high-efficiency all-fiber laser operated in high-order mode using ring-core Yb-doped fiber. Ann. Phys., 531, 1900079(2019).

    [113] R. Zheng et al. An all-fiber laser generating cylindrical vector beam. Opt. Express, 18, 10834-10838(2010).

    [114] Y. Zhou et al. Actively mode-locked all fiber laser with cylindrical vector beam output. Opt. Lett., 41, 548-550(2016).

    [115] D. Mao et al. All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers. Opt. Lett., 43, 1590-1593(2018).

    [116] Y. Yang et al. All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band. IEEE J. Sel. Top. Quantum. Electron., 26, 4500307(2020).

    [117] S. Ramachandran, P. Kristensen, M. F. Yan. Generation and propagation of radially polarized beams in optical fiber. Opt. Lett., 34, 2525-2527(2009).

    [118] W. D. Zhang et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating. Opt. Express, 24, 19278-19285(2016).

    [119] J. F. Lu et al. Dynamic mode-switchable optical vortex beams using acousto-optic mode converter. Opt. Lett., 43, 5841-5844(2018).

    [120] S. Li et al. Controllable all-fiber orbital angular momentum mode converter. Opt. Lett., 40, 4376-4379(2015).

    [121] L. Fang, J. Wang. Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings. Opt. Lett., 40, 4010-4013(2015).

    [122] Y. Zhao et al. Mode converter based on the long-period fiber gratings written in the two-mode fiber. Opt. Express, 24, 6186-6195(2016).

    [123] H. Wu et al. All-fiber second-order optical vortex generation based on strong modulated long-period grating in a four-mode fiber. Opt. Lett., 42, 5210-5213(2017).

    [124] Y. Han et al. Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings. Nanophotonics, 7, 287-293(2018).

    [125] H. Zhao et al. All-fiber second-order orbital angular momentum generator based on a single-helix helical fiber grating. Opt. Lett., 44, 5370-5373(2019).

    [126] X. D. He et al. All-fiber third-order orbital angular momentum mode generation employing an asymmetric long-period fiber grating. Opt. Lett., 45, 3621-3624(2020).

    [127] S. Yao et al. Tunable orbital angular momentum generation using all-fiber fused coupler. IEEE Photonics Technol. Lett., 30, 99-102(2018).

    [128] S. Pidishety et al. Orbital angular momentum beam excitation using an all-fiber weakly fused mode selective coupler. Opt. Lett., 42, 4347-4350(2017).

    [129] J. Q. Zheng et al. Wavelength-switchable vortex beams based on a polarization-dependent microknot resonator. Photonics Res., 6, 396-402(2018).

    [130] D. Mao et al. Optical vortex fiber laser based on modulation of transverse modes in two mode fiber. APL Photonics, 4, 060801(2019).

    [131] S. H. Li et al. Generation of orbital angular momentum beam using fiber-to-fiber butt coupling. IEEE Photonics J., 10, 6601607(2018).

    [132] C. L. Fu et al. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber. Opt. Lett., 43, 1786-1789(2018).

    [133] Z. Xie et al. Integrated (de)multiplexer for orbital angular momentum fiber communication. Photonics Res., 6, 743-748(2018).

    [134] Y. F. Zhao et al. Meta-facet fiber for twisting ultra-broadband light with high phase purity. Appl. Phys. Lett., 113, 061103(2018).

    [135] D. Lin et al. Cladding-pumped ytterbium-doped fiber laser with radially polarized output. Opt. Lett., 39, 5359-5361(2014).

    [136] H. W. Zhang et al. Generation of orbital angular momentum modes using fiber systems. Appl. Sci., 9, 1033(2019).

    [137] S. Savovic et al. A transmission length limit for space division multiplexing in step-index silica optical fibres. J. Mod. Opt., 66, 1695-1700(2019).

    [138] J. Noda, K. Okamoto, Y. Sasaki. Polarization-maintaining fibers and their applications. J. Lightwave Technol., 4, 1071-1089(1986).

    [139] P. Gregg, P. Kristensen, S. Ramachandran. Conservation of orbital angular momentum in air-core optical fibers. Optica, 4, 1115-1116(2017).

    [140] E. M. Kim et al. Robust vector beam guidance assisted by stress-induced cylindrical anisotropy in highly germanium-doped-core fiber. ACS Photonics, 6, 3032-3038(2019).

    [141] Y. Yan et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes. Opt. Lett., 37, 3294-3296(2012).

    [142] Y. Yan et al. Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs. Opt. Lett., 37, 3645-3647(2012).

    [143] N. K. Viswanathan, V. V. G. K. Inavalli. Generation of optical vector beams using a two-mode fiber. Opt. Lett., 34, 1189-1191(2009).

    [144] S. Ramachandran et al. Nonlinear generation of broadband polarisation vortices. Opt. Express, 18, 23212-23217(2010).

    [145] W. Zhang et al. Tunable-wavelength picosecond vortex generation in fiber and its application in frequency-doubled vortex. J. Opt., 20, 014004(2018).

    [146] Y. S. Rumala et al. Tunable supercontinuum light vector vortex beam generator using a q-plate. Opt. Lett., 38, 5083-5086(2013).

    [147] C. Xu et al. All-fiber laser with flattop beam output using a few-mode fiber Bragg grating. Opt. Lett., 43, 1247-1250(2018).

    [148] N. Bozinovic et al. Are orbital angular momentum (OAM/Vortex) states of light long-lived in fibers?, LWL3(2011).

    [149] G. Volpe, G. P. Singh, D. Petrov. Optical tweezers with cylindrical vector beams produced by optical fibers. Proc. SPIE, 5514, 283-292(2004).

    [150] W. Qiao et al. Approach to multiplexing fiber communication with cylindrical vector beams. Opt. Lett., 42, 2579-2582(2017).

    [151] L. Yan, P. Kristensen, S. Ramachandran. Vortex fibers for STED microscopy. APL Photonics, 4, 022903(2019).

    [152] J. F. Yang et al. Cylindrical vector modes based Mach-Zehnder interferometer with vortex fiber for sensing applications. Appl. Phys. Lett., 115, 051103(2019).

    [153] F. F. Lu et al. Nanofocusing of surface plasmon polaritons on metal-coated fiber tip under internal excitation of radial vector beam. Plasmonics, 14, 1593-1599(2019).

    [154] F. F. Lu et al. Grating-assisted coupling enhancing plasmonic tip nanofocusing illuminated via radial vector beam. Nanophotonics, 8, 2303-2311(2019).

    [155] M. Liu et al. Highly efficient plasmonic nanofocusing on a metallized fiber tip with internal illumination of the radial vector mode using an acousto-optic coupling approach. Nanophotonics, 8, 921-929(2019).

    [156] L. Zhang et al. Azimuthal vector beam exciting silver triangular nanoprisms for increasing the performance of surface-enhanced Raman spectroscopy. Photonics Res., 7, 1447-1453(2019).

    [157] R. Ryf et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 66 MIMO processing. J. Lightwave Technol., 30, 521-531(2012).

    [158] E. V. Vasilyev, S. A. Shlenov, V. P. Kandidov. The multifocus structure of radiation upon femtosecond filamentation of an optical vortex in a medium with an anomalous group velocity dispersion. Opt. Spectrosc., 126, 16-24(2019).

    [159] A. Dakova et al. Vortex structures in optical fibers with spatial dependence of the refractive index. J. Optoelectron. Adv. Mater., 21, 492-498(2019).

    [160] H. Qin et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser. Opt. Lett., 43, 1982-1985(2018).

    [161] L. G. Wright, D. N. Christodoulides, F. W. Wise. Spatiotemporal mode-locking in multimode fiber lasers. Science, 358, 94-97(2017).

    [162] D. V. Kizevetter et al. Investigation of speckle structures formed by the optical vortices of fiber lightguides. J. Opt. Technol, 82, 174-177(2015).

    [163] A. Chong et al. Airy–Bessel wave packets as versatile linear light bullets. Nat. Photonics, 4, 103-106(2010).

    [164] Y. Song et al. Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Adv. Photonics, 2, 024001(2020).

    [165] X. Yang et al. High power LP11 mode supercontinuum generation from an all-fiber MOPA. Opt. Express, 26, 13740-13745(2018).

    [166] M. Kraus, J. Watzel, J. Berakdar. Radiation characteristics of nanoscopic structures driven by perfect optical vortex pulse. Opt. Commun., 427, 390-395(2018).

    [167] J. J. J. Nivas et al. Femtosecond laser surface structuring of silicon with Gaussian and optical vortex beams. Appl. Surf. Sci., 418, 565-571(2017).

    [168] X. Wang et al. Power- and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses. Laser Photonics Rev., 10, 835-842(2016).

    [169] J. Sancho-Parramon, S. Bosch. Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams. ACS Nano, 6, 8415-8423(2012).

    CLP Journals

    [1] Hanshuo Wu, Jiangtao Xu, Liangjin Huang, Xianglong Zeng, Pu Zhou. High-power fiber laser with real-time mode switchability[J]. Chinese Optics Letters, 2022, 20(2): 021402

    [2] Chuangye Zhang, Changjun Min, Yuquan Zhang, Yanan Fu, Ling Li, Yulong Wang, Xiaocong Yuan. Detection of cylindrical vector beams with chiral plasmonic lens[J]. Chinese Optics Letters, 2022, 20(2): 023602

    [3] Xutong Wang, Sheng Yu, Shengshuai Liu, Kai Zhang, Yanbo Lou, Wei Wang, Jietai Jing. Deterministic generation of large-scale hyperentanglement in three degrees of freedom[J]. Advanced Photonics Nexus, 2022, 1(1): 016002

    [4] Zexing Zhao, Hao Chen, Ziming Zhang, Jiatong Li, Fangxiang Zhu, Wei Wan, Fei He, Huifeng Wei, Kangkang Chen, Peiguang Yan. High peak power femtosecond cylindrical vector beams generation in a chirped-pulse amplification laser system[J]. Chinese Optics Letters, 2022, 20(3): 031405

    Dong Mao, Yang Zheng, Chao Zeng, Hua Lu, Cong Wang, Han Zhang, Wending Zhang, Ting Mei, Jianlin Zhao. Generation of polarization and phase singular beams in fibers and fiber lasers[J]. Advanced Photonics, 2021, 3(1): 014002
    Download Citation