• Chinese Optics Letters
  • Vol. 20, Issue 2, 022503 (2022)
Yu Li, Weifang Yuan, Ke Li, Xiaofeng Duan*, Kai Liu, and Yongqing Huang
Author Affiliations
  • State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    DOI: 10.3788/COL202220.022503 Cite this Article Set citation alerts
    Yu Li, Weifang Yuan, Ke Li, Xiaofeng Duan, Kai Liu, Yongqing Huang. InGaAs/InAlAs SAGCMCT avalanche photodiode with high linearity and wide dynamic range[J]. Chinese Optics Letters, 2022, 20(2): 022503 Copy Citation Text show less
    Layer structure of the InGaAs/InAlAs SAGCMCT-APD.
    Fig. 1. Layer structure of the InGaAs/InAlAs SAGCMCT-APD.
    (a) Band diagram of the hybrid absorption layer APD under high input optical power and (b) band diagram of the APD with only one absorption layer under high input optical power.
    Fig. 2. (a) Band diagram of the hybrid absorption layer APD under high input optical power and (b) band diagram of the APD with only one absorption layer under high input optical power.
    Simulated vertical direction (A-A’) (a) electric field distribution and (b) electrons and holes concentration distributions at the input optical power of 0.001 mW and 4.5 mW.
    Fig. 3. Simulated vertical direction (A-A’) (a) electric field distribution and (b) electrons and holes concentration distributions at the input optical power of 0.001 mW and 4.5 mW.
    (a) Simulated vertical direction (A-A’) electric field distribution of the device, (b) energy band schematic diagram of the absorption layer, (c) absorption layer band diagram at 0.9Vbr under different R values, and (d) simulated hole and electron concentration distribution in the vertical direction (A-A’) at R = 0.2 and R = 0.8 under the input optical power of 0.5 mW.
    Fig. 4. (a) Simulated vertical direction (A-A’) electric field distribution of the device, (b) energy band schematic diagram of the absorption layer, (c) absorption layer band diagram at 0.9Vbr under different R values, and (d) simulated hole and electron concentration distribution in the vertical direction (A-A’) at R = 0.2 and R = 0.8 under the input optical power of 0.5 mW.
    Simulated input optical power dependence of linearity compression at the gain of 10 under different R values.
    Fig. 5. Simulated input optical power dependence of linearity compression at the gain of 10 under different R values.
    Simulated vertical direction (A-A’) (a) electric field distribution and (b) absorption layer band diagram of the device under different absorption layer doping levels; (c) simulated hole and electron concentration distribution in the vertical direction (A-A’) of the device at the gain of 10 under different absorption layer doping levels.
    Fig. 6. Simulated vertical direction (A-A’) (a) electric field distribution and (b) absorption layer band diagram of the device under different absorption layer doping levels; (c) simulated hole and electron concentration distribution in the vertical direction (A-A’) of the device at the gain of 10 under different absorption layer doping levels.
    Simulated optical input power dependence of linearity compression at the gain of 10 under different absorption layer doping levels.
    Fig. 7. Simulated optical input power dependence of linearity compression at the gain of 10 under different absorption layer doping levels.
    (a) Simulated photocurrent and gain of the device under different absorption layer doping levels and (b) simulated bandwidth of the device at the gain of 10 under different absorption layer doping levels. Compared with Ref. [15], the 1 dB compression point is −3.38 dBm, and the bandwidth is 6.7 GHz. Our optimized device obtains a bandwidth of 8 GHz.
    Fig. 8. (a) Simulated photocurrent and gain of the device under different absorption layer doping levels and (b) simulated bandwidth of the device at the gain of 10 under different absorption layer doping levels. Compared with Ref. [15], the 1 dB compression point is −3.38 dBm, and the bandwidth is 6.7 GHz. Our optimized device obtains a bandwidth of 8 GHz.
    ParametersUnitInGaAsInAlGaAsInAlAs
    Band-gapeV0.750.991.44
    Electron affinityeV4.54.384.25
    PermittivityC2/(N·m2)13.912.512.2
    SRH lifetimes1×1071×1081×107
    Selberherr’s parameters An, Apcm−17×105, 6.7×1056.2×107, 1×1066.2×107, 1×106
    Selberherr’s parameters Bn, BpV/cm1.2×106, 2×1064×106, 4×1064×106, 4×106
    Selberherr’s parameter β1111
    Band-to-band parameter AV−1·cm−1·s−11×10191×10195×1019
    Band-to-band parameter BV/cm3×1071×1072×107
    Band-to-band parameter γ1222
    Table 1. Material Parameters in the Simulation
    LayerThickness (nm)Doping (cm3)
    P-InGaAs contact layer501×1019
    InGaAs absorption layer5008×1017
    InAlGaAs grading layer503×1017
    P-InAlAs field control layer703×1017
    InAlAs M-layer2001×1015
    N-InAlAs field control layer703×1017
    InP-transit layer3507×1016
    N-InGaAs contact layer501×1019
    Table 2. Structure Parameters of the SAGCMCT-APD
    Yu Li, Weifang Yuan, Ke Li, Xiaofeng Duan, Kai Liu, Yongqing Huang. InGaAs/InAlAs SAGCMCT avalanche photodiode with high linearity and wide dynamic range[J]. Chinese Optics Letters, 2022, 20(2): 022503
    Download Citation