• Microelectronics
  • Vol. 52, Issue 4, 614 (2022)
SHAN Yuehui1, LIAN Luwen2, GAO Yuan1, and LAI Fan3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.220247 Cite this Article
    SHAN Yuehui, LIAN Luwen, GAO Yuan, LAI Fan. New Trends in GaN Technology Development[J]. Microelectronics, 2022, 52(4): 614 Copy Citation Text show less
    References

    [1] Yole Development. GaN RF market: applications, players, technology, and substrates [EB/OL]. http://www.yole.fr/GaN_RF_Market_Update_2021.aspx, 2021.

    [2] MISHRA U, PARIKH P, WU Y F.AlGaN/GaN HEMTs —— an overview of device operation and applications [J]. Proceed IEEE, 2002, 90(6): 1022- 1031.

    [3] TSAI C, WANG Y, KWAN M, et al. Smart GaN platform: performance & challenges [C]// IEDM Tech Dig. San Francisco, CA, USA 2017: 33.1.1-33.1.4.

    [4] CHEN K.GaN smart power chip technology [C]// IEEE Int Conf Elec Dev Sol Sta Circ (EDSSC). xian, China 2009: 403-407.

    [5] PENGELLY R, TURNER J. Monolithic broadbandGaAs FET amplifiers [J]. Elec Lett, 1976, 12(10): 251-252.

    [6] PEREIRA A, ALBAHRANI S, PARKER A, et al. MMIC process for integrated power converters [C]// IEEE TENCON. Sydney, Australia. 2013.

    [7] OTSUKA N, KAWAI Y, NAGAI S. Recent progress in GaN devices for power and integrated circuit [C]// IEEE 12th Int Conf ASIC (ASICON). Guiyang, China 2017: 928-931.

    [8] PENGELLY R S, WOOD S M, MILLIGAN J W, et al.A review of GaN on SiC high electron- mobility power transistors and MMICs [J]. IEEE Trans Microw Theo Techn, 2012, 60(6): 1764-1783.

    [9] MICOVIC M, BROWN D F, REGAN D, et al. High frequency GaN HEMTs for RF MMIC applications [C]// IEEE Int Elec Dev Meet (IEDM). San Francisco, CA ,USA. 2016: 3.3.1-3.3. 4.

    [10] HASSAN A, ALI M, TRIGUI A, et al.A GaN-based wireless monitoring system for high-temperature applications [J]. Sensors, 2019, 19(8): 1785-1788.

    [11] LIU H, ZHU X, BOON C C, et al. Design of ultra-low phase noise and high power integrated oscillator in 0.25 μm GaN-on-SiC HEMT technology [J]. IEEE Microw Wirel Compon Lett, 2014, 24(2): 120-122.

    [12] KUWABARA T, TAWA N, TONE Y, et al. A 28 GHz 480 elements digital AAS using GaN HEMT amplifiers with 68 dBm EIRP for 5G longrange base station applications [C]// IEEE Compound Semicond Integr Circ Symp (CSICS). Miami, FL, USA. 2017: 1-4.

    [13] WEBER R, SCHWANTUSCHKE D, BRUCKNER P, et al. A 92 GHzGaN HEMT voltage-controlled oscillator MMIC [C]// IEEE MTT-S Int Microw Symp. 2014: 1-4.

    [14] KLEMMER N. GaN for communications [C]// SRC Decadal Plan Workshop on New Trajectories for Communication, Qualcomm. San Diego, CA, USA. 2020.

    [15] MCHALE J.GaN in space, military RF trends [EB/OL]. https://www.qorvo.com, 2021.

    [16] BETTIDI A, CAROSI D, CETRONIOA, et al. X-band transmit/receive module MMIC chip-set based on emerging GaN and SiGe technologies [C]// EEE Int Symp Phased Array Syst Technol. Waltham, MA, USA 2010: 250-255.

    [17] BARTOCCI M, DE SANTIS G, GIOLO G, et al. 4W TX/RX multi chip module for 6-18 GHz phased array [C]// Gallium Arsenide Applications Symposium (GAAS). London, GB. 2001.

    [18] LACOMME P. New trends in airborne phased array radars [C]// IEEE Int Symp Phased Array Syst Technol. Boston, MA, USA. 2003: 17-22.

    [19] BACCELLO D, D'ANTONI M, OROBELLO B, et al.Miniaturised low cost solid state 4W TXRX common leg for 6-18 GHz phased array [C]// IEEE MTT-S Int Microw Symp. Anaheim, CA, USA. 2010:401-403.

    [20] ALBRECHT J D, CHANG T H, KANE A S, et al.DARPA's nitride electronic next generation technology program [C]// IEEE Compound Semicond Integr Circ Symp (CSICS). 2010: 1-4.

    [21] CHEN Y K, CHANG T H, SIVANANTHAN A. Advanced mm-wave power electronics (invited talk) [C]// IEEEBiCMOS Compound Semicond Integr Circ Technol Symp (BCICTS). 2019.

    [22] ROTH G J. Mission assurance guidelines for A-D mission risk classes, aerospace reportNo. TOR-2011(8591)-21 [Z]. The Aerospace Corporation. El Segundo, CA, USA. 2011.

    [23] MIL-PRF-38534L, performance specification: general specification for hybrid microcircuits (Rev. H) [Z]. Defense Logistics Agency, US Dept of Defense. Columbus, OH, USA. 2019.

    [24] MIL-PRF-19500P, w/Amendment 4, performance specification: general specification for semiconductor devices [Z]. Defense Logistics Agency, US Dept of Defense. Columbus, OH, USA. 2018.

    [25] MIL-PRF-38535L, performance specification: general specification for integrated circuits (microcircuits) manufacturing (Rev. L) [Z]. Defense Logistics Agency, US Dept of Defense. Columbus, OH, USA. 2013.

    [26] KARMARKAR A P, JUN B, FLEETWOOD D M, et al. Proton irradiation effects on GaN-based high electron-mobility transistors with Si-doped AlxGa1-xN and thick GaN cap layers [J]. IEEE Trans Nucl Sci, 2004, 51(6): 3801-3806.

    [27] MATSUO M, MURAYAMA T, KOIKE K, et al. Polarity dependent radiation hardness of GaN [C]// IEEE Int Meet Future Elec Dev, Kansai (IMFEDK). 2015.

    [28] PEARTON S J, DEIST R, REN F, et al. Review of radiation damage in GaN-based materials and devices [J]. J Vacuum Sci & Technol A Vacuum Surfaces & Films, 2013, 31(5): 050801-1- 050801-16.

    [29] SASIKUMAR A, AREHART A R, KAUN S W, et al. Defects in GaN based transistors [C]// Proceed SPIE 8986, Gallium Nitride Materials and Devices IX, 89861C. San Francisco, CA, USA. 2014.

    [30] CHOW K H, WATKINS G D, USUI A, et al. Detection of interstitial Ga in GaN [J]. Phys Rev Lett, 2000, 85(13): 2761-2764.

    [31] POLYAKOV A Y. Radiation effects in GaN [J]. Springer Series in Materials Science, 2012, 156(1): 251-294.

    [32] SCHRIMPF R D, FLEETWOOD D M. Radiation effects and soft errors in integrated circuits and electronic devices [M]. Singapore: World Scientific Publishing Company, 2004.

    [33] SUN W, ZHANG Z, MOHSIN T, et al. General model for irradiation-induced degradation of GaN HEMTs [C]// ROCS. Indian Wells, CA, USA. 2017.

    [34] PANTELIDES S T, TSETSERIS L, BECK M J, et al. Performance, reliability, radiation effects, and aging issues in microelectronics - from atomic-scale physics to engineering-level modeling [J]. Sol Sta Elec, 2010, 54(9): 841-848.

    [35] EPC2023—Enhancement Mode Power Transistor [EB/OL]. https://epc-co.com/epc/Products/ eGaNFETsandICs/EPC2023.aspx, 2022.

    [36] EPC2012C—Enhancement Mode Power Transistor [EB/OL]. https://epc-co.com/epc/ Products/eGaNFETsandICs/EPC2012C.aspx, 2021.

    [37] EPC2108—Enhancement Mode GaN Power Transistor Half Bridge with Integrated Synchronous Bootstrap [EB/OL]. https://epc-co. com/epc/Products/eGaNFETsandICs/EPC2108.aspx, 2019.

    [38] 650 V SuperGaN FET in TO-247 [EB/OL]. https://www.transphormusa.com/en/document/datasheet-tp65h035g4ws-650v-gan-fet, 2019.

    [39] IGT40R070D1 E8220 400 V CoolGaNTM Enhancement-Mode Power Transistor [EB/OL]. https://www.infineon.com/dgdl/Infineon-IGT40R070D1E8220-DataSheetv02_01-EN.pdf, 2019.

    [40] IGT60R070D1 600 V CoolGaNTM Enhancement-Mode Power Transistor [EB/OL]. https://www.infineon.com/dgdl/Infineon-IGT60R070D1-DataSheet-v02_12-EN.pdf, 2020.

    [41] Panasonic PGA26E06BA Product Standard [EB/OL]. https://industrial.panasonic.com/content/ data/SC/ds/ds4/PGA26E06BA_E. pdf, 2021.

    [42] TP90H050WS Datasheet [EB/OL]. https://www. transphormusa.com/en/document/datasheettp90h050ws, 2020.

    [43] HWANG I, CHOI H, LEE J W, et al. 1.6 kV, 2.9 mΩ·cm2 normally-off p-GaN HEMT device [C]// 24th Int Symp Power Semicond Dev ICs. 2012: 41-44.

    [44] DOGMUS E, ZEGAOUI M, MEDJDOUB F. GaN-on-silicon high-electron-mobility transistor technology with ultra-low leakage up to 3000 V using local substrate removal and AlN ultra-wide bandgap [J]. Appl Phys Express, 2018, 11(3): 034102.1-034102.2.

    [45] MORITA T, TAMURA S, ANDA Y, et al. 99.3% efficiency of three-phase inverter for motor drive using GaN-based gate injection transistors [C]// Twenty-Sixth Annual IEEE Applied Power Elec Conf Exposi (APEC). 2011: 481-484.

    [46] HAN D, OGALE A, LI S L, et al. Efficiency characterization and thermal study of GaN based 1 kW inverter [C]// IEEE Applied Power Elec Conf Exposi (APEC). 2014: 2344-2350.

    [47] ZHANG W M, LONG Y, ZHANG Z Y, et al. Evaluation and comparison of silicon and gallium nitride power transistors in LLC resonant converter [C]// IEEE Energy Conversion Congr Exposi (ECCE). 2012: 1362-1366.

    [48] GURPINAR E, CASTELLAZZI A, IANNUZZO F, et al. Ultra-low inductance design for a GaN HEMT based 3L-ANPC inverter [C]// IEEE Energy Conversion Congr Exposi (ECCE). 2016: 1-8.

    [49] GURPINAR E, CASTELLAZZI A. 600 V normally-off p-gate GaN HEMT based 3-level inverter [C]// IEEE 3rd Int Future Energy Elec Conf ECCE Asia (IFEEC 2017—ECCE Asia). 2017: 621-626.

    [50] HE M X, ZHU X Y, ZHANG Z L, et al. A 1-MHz GaN converter with 4X voltage range [C]// IEEE Applied Power Elec Conf Exposi (APEC). 2019: 2349-2355.

    [51] High-efficiency, 1.6-kW high-density GaN-based 1-MHz CrM totem-pole PFC converter reference design [EB/OL]. https://www.ti.com/lit/ug/ tidudt3b/tidudt3b.pdf, 2020.

    [52] VILLARRUEL-PARRA A, FORSYTH A. 75 MHz discrete GaN based multi-level buck converter for envelope tracking applications [C]// IEEE Applied Power Elec Conf Exposi (APEC). 2019: 1553-1560.

    [53] LI X, AMIRIFAR N, GEENS K, et al. GaN-on-SOI: monolithically integrated All-GaN ICs for power conversion [C]// IEEE Int Elec Dev Meet (IEDM). 2019: 4.4.1-4.4.4.

    [54] YAMASHITA Y, STOFFELS S, POSTHUMA N, et al. Monolithically integrated E-mode GaN-on- SOI gate driver with power GaN-HEMT for MHz-switching [C]// IEEE 6th Workshop Wide Bandgap Power Dev Applic (WiPDA). 2018: 231-236.

    [55] AHMED S, TAHER M I B. GaN-based sub-10 nm metal-oxide-semiconductor field-effect transistors [J]. J Semicond Dev Circ, 2016, 3(1): 25-30.

    [56] STEIGER S, POVOLOTSKYI M, PARK H H, et al. NEMO5: a parallel multiscale nanoelectronics modeling tool [J]. IEEE Trans Nanotechnol, 2011, 10(6): 1464-1474.

    [57] CHU Y, LU S, CHOWDHURY N, et al. Superior performance of 5-nm gate length GaN nanowire nFET for digital logic applications [J]. IEEE Elec Dev Lett, 2019, 40(6): 874-877.

    [58] WAHID S, CHOWDHURY N, ALAM M K, et al. Barrier heights and Fermi level pinning in metal contacts on p-type GaN [J]. Appl Phys Lett, 2020, 116(21): 1-5.

    [59] HAN W T, RADOSAVLJEVIC M, JUN K, et al. Gallium nitride and silicon transistors on 300 mm silicon wafers enabled by 3D monolithic heterogeneous integration [J]. IEEE Trans Elec Dev, 2020, 67(12): 5306-5314.

    [60] The decadal plan for semiconductors full report [EB/OL]. https://www.src.org/about/decadal-plan, 2021.

    [61] NAKAMURA Y, TERAI H, INOMATA K, et al. Superconducting qubits consisting of epitaxially grown NbN/AlN/NbN Josephson junctions [J]. Appl Phys Lett, 2011, 99(21): 1031-1032.

    [62] KIM S, TERAI H, YAMASHITA T, et al. Enhanced-coherence all-nitride superconducting qubit epitaxially grown on Si substrate [EB/OL]. https://doi.org/10.48550/arXiv.2103.07711, 2021.

    [63] DANE A E, MCCAUGHAN A N, ZHU D, et al. Bias sputtered NbN and superconducting nanowire devices [J]. Appl Phys Lett, 2017, 111(12): 122601-1-122601-5.

    [64] VARLEY J B, JANOTTI A, VAN DE WALLE C G. Defects in AlN as candidates for solid-state qubits [J]. Phys Rev B, 2016, 93(16): 161201.

    [65] YANG T Y, RUFFINO A, MICHNIEWICZ J, et al. Quantum transport in 40-nm MOSFETs at deep-cryogenic temperatures [J]. IEEE Elec Dev Lett, 2020, 41(7): 981-984.

    [66] CARDOSO PAZ B, CASSE M, THEODOROU C, et al. Performance and low frequency noise of 22-nm FDSOI down to 4.2 K for cryogenic applications [J]IEEE Trans Elec Dev, 2020, 67(11): 4563-4567.

    [67] YING H, TENG J W, RAGHUNATHAN U S, et al. Variability of p-n junctions and SiGe HBTs at cryogenic temperatures [J]. IEEE Trans Elec Dev, 2021, 68(3): 987-993.

    [68] CHA E, WADEFALK N, MOSCHETTI G, et al. InP HEMTs for sub-mW cryogenic low-noise amplifiers [J]. IEEE Elec Dev Lett, 2020, 41(7): 1005-1008.

    [69] CHOWDHURY N, XIE Q, YUAN M, et al. Regrowth-free GaN-based complementary logic on a Si substrate [J]. IEEE Elec Dev Lett, 2020, 41(6): 820-823.