• Infrared and Laser Engineering
  • Vol. 52, Issue 10, 20230004 (2023)
Fuhao Li, Jiguang Zhao, Xiaoping Du, Jianwei Zhang..., Yongsheng Duan* and Pan Chen|Show fewer author(s)
Author Affiliations
  • Department of Electronic and Optical Engineering, Space Engineering University, Beijing 101416, China
  • show less
    DOI: 10.3788/IRLA20230004 Cite this Article
    Fuhao Li, Jiguang Zhao, Xiaoping Du, Jianwei Zhang, Yongsheng Duan, Pan Chen. Research status and trend analysis of beam deflection technology based on space laser communication[J]. Infrared and Laser Engineering, 2023, 52(10): 20230004 Copy Citation Text show less
    References

    [1] Yunqiang Zheng, Huan Liu, Jiacheng Meng, . Development status, trend and key technologies of air-based laser communication. Infrared and Laser Engineering, 51, 20210475(2022).

    [2] Rui Li, Baojun Lin, Yingchun Liu, . Review on laser intersatellite link: Current status, trends, and prospects. Infrared and Laser Engineering, 52, 20220393(2023).

    [3] Chen Fei. Study on high power Nd: YAG laser scanning galvanometer system[D]. Wuhan: Huazhong University of Science & Technology, 2011. (in Chinese)

    [4] Mincuzzi G, Rebiere A, Lopez J, et al. New, fast, galvo scanner head f high throughput micromachining [C]Proceedings of SPIE, 2018, 10520: 105200X.

    [5] Mincuzzi G, Rebiere A, Goaec B, et al. Beam engineering f high throughput material processing with high power, femtosecond lasers [C]Proceedings of SPIE, 2019, 10906: 109061B.

    [6] G Mincuzzi, E Audouard, A Bourtereau, et al. Pulse to pulse control for highly precise and efficient micromachining with femtosecond lasers. Optics Express, 28, 17209-17218(2020).

    [7] Nana Fan, Mao Wang, Shaocong Wen, . Optical design for 2D MEMS-based lidar system. Optical Technique, 46, 290-294(2020).

    [8] Shouzhen Xu, Shimeng Xie, Dan Wu, . Ultrasound/photoacoustic dual-modality imaging based on acoustic scanning galvanometer. Acta Phys Sin, 71, 050701(2022).

    [9] Lu Yafei. Research on fastfine steering mirr system [D]. Changsha: National University of Defense Technology, 2009: 2130. (in Chinese)

    [10] Wu Xin. Research on highperfmance fast steering mirr [D]. Wuhan: Huazhong University of Science Technology, 2012: 119. (in Chinese)

    [11] Loney G C. Design perfmance of a small twoaxis highbwidth steering mirr [C]Proceedings of SPIE, 1991, 1454: 198206.

    [12] D J Kluk, M T Boulet, D L Trumper. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator. Mechatronics, 22, 257-270(2012).

    [13] Tapos F M, Edinger D J, Hilby T R, et al. High bwidth fast steering mirr [C]Proceedings of SPIE, 2005, 5877: 587707.

    [14] C Ernst, S Georg. System design and control of a resonant fast steering mirror for Lissajous-based scanning. IEEE/ASME Transactions on Mechatronics, 22, 1963-1972(2017).

    [15] Willstatter L, Mahon R, Ghizi J, et al. acterization of faststeering mirrs at both high low temperatures [C]Proceedings of SPIE, 2020, 11272: 112721K.

    [16] Bing Shao, Lining Sun, Dongsheng Qu, . Research on the key technology of ATP system for free space optical communication. Piezoelectrics & Acoustooptics, 27, 431-433(2005).

    [17] Sihua Xiang, Sihai Chen, Xin Wu, . Laser scanner based on novel piezoelectric actuators. Infrared and Laser Engineering, 39, 67-70, 75(2010).

    [18] Gang Yuan, Daihua Wang, Shidong Li, . Piezoelectric fast steering mirror with large excursion angle. Optics and Precision Engineering, 23, 2258-2264(2015).

    [19] Bing Ran, Dizhi Zhao, Lianghua Wen. Research on dynamic stress of piezoelectric fast steering mirror stacked PZT actuator. Laser & Optoelectronics Progress, 59, 0523001(2022).

    [20] Ning Yu. Perfmance test application study of a bimph defmable mirr[D]. Changsha: National University of Defence Technology, 2008: 2335. (in Chinese)

    [21] Miller L M, Agronin M L, Bartman R K, et al. Fabrication acterization of a micromachined defmable mirr f adaptive optics applications [C]Proceedings of SPIE, 1993, 1945: 421430.

    [22] R Krishnamoorthy, T G Bifano, N Vandelli, et al. Development of microelectromechanical deformable mirrors for phase modulation of light. Optical Engineering, 36, 542-548(1997).

    [23] Huikai Xie, Yingtian Pan, G K Fedder. A CMOS-MEMS mirror with curled-hinge comb drives. Journal of Microelectromechanical Systems, 12, 450-457(2003).

    [24] S A Cornelissen, P A Bierden, T G Bifano, et al. 4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging. Journal of Micro-nanolithography MEMS and MOEMS, 8, 031308(2009).

    [25] Yanhui Bai, J T W Yeow, B C Wilson. Design, fabrication, and characteristics of a MEMS micromirror with sidewall electrodes. Journal of Microelectromechanical Systems, 19, 619-631(2010).

    [26] S Afrang, H Mobki, M Hassanzadeh, et al. Design and simulation of a MEMS analog micro-mirror with improved rotation angle. Microsystem Technologies-Micro and Nanosystems Information Storage and Processing Systems, 25, 1099-1109(2019).

    [27] Xuye Zhuang, Weimin Wang, Fenggang Tao, . Development of non-perpendicular 2D MEMS tilt mirrors. Optics and Precision Engineering, 19, 1845-1851(2011).

    [28] Fangrong Hu, Jun Yao. Microelectromechanical systems deformable mirror actuator based on electrostatic repulsive force. High Power Laser and Particle Beams, 22, 41-44(2010).

    [29] Weimin Wang, Qiang Wang. Development and characterization of a 140-element MEMS deformable mirror. Opto-Electronic Engineering, 45, 104-112(2018).

    [30] Wang Jian. Research on acteristic of transceiving systems of intersatellite laser communication based on acoustooptic deflects[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)

    [31] Kpel A. AcoustoOptics [M]. 2nd ed. New Yk: Marcel Dekker, Inc, 1997.

    [32] Li Jie. Research on the optimum design of broadb acoustooptic deflect[D]. Shijiazhuang: Hebei Nmal University, 2016. (in Chinese)

    [33] S N Antonov, A V Vainer, V V Proklov, et al. Extension of the angular scanning range of the acousto-optic deflector with a two-element phased-array piezoelectric transducer. Technical Physics, 58, 1346-1351(2013).

    [34] S N Antonov. Acousto-optic deflector of depolarized laser radiation. Technical Physics, 61, 134-137(2016).

    [35] S N Antonov. Acousto-optic deflector with a high diffraction efficiency and wide angular scanning range. Acoustical Physics, 64, 432-436(2018).

    [36] S N Antonov, Y G Rezvov. An Acousto-optical deflector based on paratellurite: increasing the thermal stability of parameters. Instruments and Experimental Techniques, 64, 729-733(2021).

    [37] I Peled, R Kaminsky, Z Kotler. Acousto-optics bandwidth broadening in a Bragg cell based on arbitrary synthesized signal methods. Applied Optics, 54, 5065-5073(2015).

    [38] Gongyu Li, Dali Liu. Study of chirp acoustooptic surface wave transducer. Journal of Changchun Post and Telecomm-Unication Institute, 18, 23-27(2000).

    [39] Xiaoliang He, Wei Liu, Jianguo Zhou, . Application of high-resolution acoustooptic deflector on spectrum analysis. Piezoelectrics & Acoustooptics, 27, 16-17, 28(2005).

    [40] Kuanxin Yu, Yinmei Mi, Meng Suo. Optimal design of TeO2 ultrasonic beam steering anisotropic acousto-optic deflector. Piezoelectrics & Acoustooptics, 29, 510-512, 529(2007).

    [41] Zehong Zhang, Chuan Lu, Xiaoliang He, . Study on acousto-optic deflector based on gallium phosphide. Piezoelectrics & Acoustooptics, 36, 694-697(2014).

    [42] Zehong Zhang, Xiaoliang He. Abnormal acousto-optic deflector with large-bandwidth. Piezoelectrics & Acoustooptics, 38, 837-839(2016).

    [43] Qian Xia, Qinghua Chen, Zehong Zhang, . Study on antistatic of high frequency acousto-optic deflector. Piezoelectrics & Acoustooptics, 43, 51-53, 58(2021).

    [44] McManamon P F. An overview of optical phased array technology status [C]Proceedings of SPIE, 2005, 5947: 594701.

    [45] P F Mcmanamon, T A Dorschner, D L Corkum, et al. Optical phased array technology. Proc of the IEEE, 84, 268-298(1996).

    [46] R C Sharp, D P Resler, D S Hobbs, et al. Electrically tunable liquid-crystal wave plate in the infrared. Optics Letters, 15, 87-89(1990).

    [47] D Engstrom, M J O'Callaghan, C Walker, et al. Fast beam steering with a ferroelectric-liquid-crystal optical phased array. Applied Optics, 48, 1721-1726(2009).

    [48] F Peng, Y H Lee, Z Luo, et al. Low voltage blue phase liquid crystal for spatial light modulators. Optics Letters, 40, 5097-5100(2015).

    [49] S Q Li, X W Xu, R M Veetil, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [50] Jian Zhang, Lin Xu, Liying Wu, . Programmable beam steering based on liquid crystal optical phased array. Acta Photonica Sinica, 37, 1497-1502(2008).

    [51] Sun Yangdong. Research application of phased array laser radar wave control technology[D]. Chengdu: University of Electronic Science Technology of China, 2011. (in Chinese)

    [52] X Wang, L Wu, C Xiong, et al. Agile laser beam deflection with high steering precision and angular resolution using liquid crystal optical phased array. IEEE Transactions on Nanotechnology, 17, 26-28(2018).

    [53] P F Mcmanamon. Agile Nonmechanical beam steering. Optical Photonics News, 17, 24-29(2006).

    [54] W C Goltsos, M Holz. Agile beam steering using binary optics microlens arrays. Optical Engineering, 29, 1392-1397(1990).

    [55] Watson E A, Whitaker W E, Brewer C D, et al. Implementing optical phased array beam steering with caded microlens arrays [C]Proceedings of the IEEE Aerospace Conference, 2002: 14291436.

    [56] Lei Shi, Jianru Shi, P F Mcmanamon, et al. Design considerations for high efficiency liquid crystal decentered microlens arrays for steering light. Applied Optics, 49, 409-421(2010).

    [57] Liwei Li, D Bryant, P J Bos. Liquid crystal lens with concentric electrodes and inter-electrode resistors. Liquid Crystals Reviews, 2, 130-154(2014).

    [58] J Beeckman, T-H Yang, I Nys, et al. Multi-electrode tunable liquid crystal lenses with one lithography step. Optics Letters, 43, 271-274(2018).

    [60] Dong Shan. Research on beam steering with microlens arrays[D]. Wuhan: Huazhong University of Science & Technology, 2007. (in Chinese)

    [61] Hongbo Xie, Yao Wang, Chensheng Mao, . Micro-lens array for integrative transmitting and receiving continuous scanning. Journal of Applied Optics, 39, 613-618(2018).

    [62] Chen Mingce, Li Zheng, Shao Qi, et al. A new type of liquidcrystal cylindrical microlens arrays with nonunifm microcoil electrodes [C]Proceedings of SPIE, 2019, 10941: 109410U.

    [63] Rui Li, Fan Chu, Hu Dou, et al. Double-layer liquid crystal lens array with composited dielectric layer. Liquid Crystals, 47, 248-254(2020).

    [64] Xu Yang, Chao Geng, Xiaoyang Li, . Review of microlens array optical phased array beam scanning technique. High Power Laser and Particle Beams, 33, 69-79(2021).

    [65] Oh C, Kim J, Muth J M, et al. A new beam steering concept: Risley gratings [C]Proceedings of SPIE, 2009, 7466: 74660J.

    [66] Kim J, Oh C, Escuti M J, et al. Wideangle nonmechanical beam steering using thin liquid crystal polarization gratings [C]Proceedings of SPIE, 2008, 7093: 709302.

    [67] Kim J, Miskiewicz M N, Serati S. High efficiency quasiternary design f nonmechanical beamsteering utilizing polarization gratings [C]Proceedings of SPIE, 2010, 7816: 78160G.

    [68] Kim J, Miskiewicz M N, Serati S, et al. Demonstration of largeangle nonmechanical laser beam steering based on LC polymer polarization gratings [C]Proceedings of SPIE, 2011, 8052: 80520T.

    [69] J Kim, M N Miskiewicz, S Serati, et al. Nonmechanical laser beam steering based on polymer polarization gratings: design optimization and demonstration. Journal of Lightwave Technology, 33, 2086-2077(2015).

    [70] S Serati, C L Hoy, L Hosting, et al. Large-aperture, wide-angle nonmechanical beam steering using polarization gratings. Optical Engineering, 56, 031211(2016).

    [71] X Xiang, J Kim, M J Escuti. Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles. Scientific Reports, 8, 467-475(2018).

    [72] Huang Shuaijia. The beam steering applications of polymer wk liquid crystal devices[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)

    [75] Li Songzhen. Design of liquid crystal polarizationn grating study of its beam deflect acteristics[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese)

    [76] Bing Liu, Xuping Wang, Yuguo Yang, . Principles, devices, and applications of beam deflection based on quadratic electro-optic effect of potassium tantalate niobate. Laser & Optoelectronics Progress, 57, 071609(2020).

    [77] Guochang Xu. The characteristics and design of the electro-optic deflector with quadrupole electrodes. Journal of Southeast University, 22, 13-17(1992).

    [78] Yuexia Ai, Jingzhen Li, Xiangdong Gong. Studies on electro-optic deflector with hypersurface electrode struture. Acta Photonica Sinica, 35, 33-36(2006).

    [79] K Nakamura, J Miyazu, M Sasaura, et al. Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3. Applied Physics Letters, 89, 131115(2006).

    [80] K Nakamara, J Miyazu, Y Sasaki, et al. Space-charge-controlled electro-optic effect: Optical beam deflection by electro-optic effect and space-charge-controlled electrical conduction. Journal of Applied Physics, 104, 013105(2008).

    [81] J Miyazu, T Imai, S Toyoda, et al. New beam scanning model for high-speed operation using KTa1−xNbxO3 crystals. Applied Physics Express, 4, 111501(2011).

    [82] K Nakamara, J Miyazu, Y Shogo. High-resolution KTN optical beam scanner. NTT Technical Review, 7, 1-6(2009).

    [83] Y Sasaki, Y Okabe, M Ueno, et al. Resolution enhancement of KTa1−xNbxO3 electro-optic deflector by optical beam shaping. Applied Physics Express, 6, 102201(2013).

    [84] T Imai, J Miyazu, J Kobayashi. Charge distributions in KTa1−xNbxO3 optical beam deflectors formed by voltage application. Optics Express, 22, 14114-14126(2014).

    [85] Sasaki Y, Toyoda S, Sakamoto T, et al. Electrooptic KTN deflect stabilized with 405 nm light irradiation f wavelengthswept light source [C]Proceedings of SPIE, 2017, 10100: 101000H.

    [86] S Tatsumi, T Imai, J Yamaguchi. Reduction of ambient temperature dependence of KTa1−xNbxO3 electro-optic deflector by double-thermistor structure. Precision Engineering, 59, 150-155(2019).

    [87] Chao J H, Zhu W B, Wang C, et al. Nanosecond speed preinjected space ge controlled KTN beam deflect [C]Proceedings of SPIE, 2015, 9586: 95860T.

    [88] W Zhu, J H Chao, C J Chen, et al. Photon excitation enabled large aperture space-charge-controlled potassium tantalate niobate (KTN) beam deflector. Applied Physics Letters, 112, 132901(2018).

    [89] S Kawamura, T Imai, J Miyazu, et al. 2.5-fold increase in lens power of a KTN varifocal lens by employing an octagonal structure. Applied Optics, 54, 4197-4201(2015).

    [90] C J Chen, J H Chao, Y G Lee, et al. Enhanced electro-optic beam deflection of relaxor ferroelectric KTN crystals by electric-field-induced high permittivity. Optical Letters, 44, 5557-5560(2019).

    [91] J W Zhang, X P Du, J G Zhao, et al. Discrete electro-optic effect induced by multiscale nanoresonators. Optical Materials, 127, 112271(2022).

    [92] C J Chen, J H Chao, Y G Lee, et al. Analysis on the electric field distribution in a relaxor ferroelectric KTN crystal near field-induced phase transition using optical deflection measurements. Optics Express, 28, 31034-31042(2020).

    [93] C J Chen, A N Shang, Y G Lee, et al. Anomalous bi-directional scanning electro-optic KTN devices with UV-assisted electron and hole injections. Optics Letters, 45, 5360-5363(2020).

    [94] Y G Lee, C J Chen, A N Shang, et al. Enhanced c-axis KTN beam deflector by compensating compositional gradient effect with a thermal gradient. OSA Continuum, 4, 665-671(2021).

    [95] Tang Y J, Wang J Y, Wang X P, et al. KTNbased electrooptic beam scanner [C]Proceedings of SPIE, 2008, 7135: 713538.

    [96] X P Wang, B Liu, Y G Yang, et al. Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa1-xNbxO3 crystal. Applied Physics Letters, 105, 051910(2014).

    [97] Wang Shuang. The applied research of the temperature controlled light beam deflection based on lithium niobate crystal [D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)

    [98] F Tian, H Lu, Z Sui, et al. Electro-optic deflection in a lithium niobate quasi-single mode waveguide with microstructured electrodes. Optics Express, 26, 30100-30107(2018).

    [99] Ma Xiangguo. Study on the they experiment of optical programmable electronically controlled beam deflection [D]. Tianjin: Tianjin University, 2019. (in Chinese)

    [100] Xing Bohan. Study on controllable frequency doubling modulation deflection properties of lithium niobate crystal [D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)

    CLP Journals

    [1] Duorui GAO, Mingyang SUN, Mingze HE, Shuaiwei JIA, Zhuang XIE, Bin YAO, Wei WANG. Development current status and trends analysis of deep space laser communication (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(7): 20240247

    Fuhao Li, Jiguang Zhao, Xiaoping Du, Jianwei Zhang, Yongsheng Duan, Pan Chen. Research status and trend analysis of beam deflection technology based on space laser communication[J]. Infrared and Laser Engineering, 2023, 52(10): 20230004
    Download Citation