[1] Yunqiang Zheng, Huan Liu, Jiacheng Meng, . Development status, trend and key technologies of air-based laser communication. Infrared and Laser Engineering, 51, 20210475(2022).
[2] Rui Li, Baojun Lin, Yingchun Liu, . Review on laser intersatellite link: Current status, trends, and prospects. Infrared and Laser Engineering, 52, 20220393(2023).
[3] Chen Fei. Study on high power Nd: YAG laser scanning galvanometer system[D]. Wuhan: Huazhong University of Science & Technology, 2011. (in Chinese)
[4] Mincuzzi G, Rebiere A, Lopez J, et al. New, fast, galvo scanner head f high throughput micromachining [C]Proceedings of SPIE, 2018, 10520: 105200X.
[5] Mincuzzi G, Rebiere A, Goaec B, et al. Beam engineering f high throughput material processing with high power, femtosecond lasers [C]Proceedings of SPIE, 2019, 10906: 109061B.
[7] Nana Fan, Mao Wang, Shaocong Wen, . Optical design for 2D MEMS-based lidar system. Optical Technique, 46, 290-294(2020).
[8] Shouzhen Xu, Shimeng Xie, Dan Wu, . Ultrasound/photoacoustic dual-modality imaging based on acoustic scanning galvanometer. Acta Phys Sin, 71, 050701(2022).
[9] Lu Yafei. Research on fastfine steering mirr system [D]. Changsha: National University of Defense Technology, 2009: 2130. (in Chinese)
[10] Wu Xin. Research on highperfmance fast steering mirr [D]. Wuhan: Huazhong University of Science Technology, 2012: 119. (in Chinese)
[11] Loney G C. Design perfmance of a small twoaxis highbwidth steering mirr [C]Proceedings of SPIE, 1991, 1454: 198206.
[13] Tapos F M, Edinger D J, Hilby T R, et al. High bwidth fast steering mirr [C]Proceedings of SPIE, 2005, 5877: 587707.
[15] Willstatter L, Mahon R, Ghizi J, et al. acterization of faststeering mirrs at both high low temperatures [C]Proceedings of SPIE, 2020, 11272: 112721K.
[16] Bing Shao, Lining Sun, Dongsheng Qu, . Research on the key technology of ATP system for free space optical communication. Piezoelectrics & Acoustooptics, 27, 431-433(2005).
[17] Sihua Xiang, Sihai Chen, Xin Wu, . Laser scanner based on novel piezoelectric actuators. Infrared and Laser Engineering, 39, 67-70, 75(2010).
[19] Bing Ran, Dizhi Zhao, Lianghua Wen. Research on dynamic stress of piezoelectric fast steering mirror stacked PZT actuator. Laser & Optoelectronics Progress, 59, 0523001(2022).
[20] Ning Yu. Perfmance test application study of a bimph defmable mirr[D]. Changsha: National University of Defence Technology, 2008: 2335. (in Chinese)
[21] Miller L M, Agronin M L, Bartman R K, et al. Fabrication acterization of a micromachined defmable mirr f adaptive optics applications [C]Proceedings of SPIE, 1993, 1945: 421430.
[24] S A Cornelissen, P A Bierden, T G Bifano, et al. 4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging. Journal of Micro-nanolithography MEMS and MOEMS, 8, 031308(2009).
[26] S Afrang, H Mobki, M Hassanzadeh, et al. Design and simulation of a MEMS analog micro-mirror with improved rotation angle. Microsystem Technologies-Micro and Nanosystems Information Storage and Processing Systems, 25, 1099-1109(2019).
[29] Weimin Wang, Qiang Wang. Development and characterization of a 140-element MEMS deformable mirror. Opto-Electronic Engineering, 45, 104-112(2018).
[30] Wang Jian. Research on acteristic of transceiving systems of intersatellite laser communication based on acoustooptic deflects[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
[31] Kpel A. AcoustoOptics [M]. 2nd ed. New Yk: Marcel Dekker, Inc, 1997.
[32] Li Jie. Research on the optimum design of broadb acoustooptic deflect[D]. Shijiazhuang: Hebei Nmal University, 2016. (in Chinese)
[38] Gongyu Li, Dali Liu. Study of chirp acoustooptic surface wave transducer. Journal of Changchun Post and Telecomm-Unication Institute, 18, 23-27(2000).
[39] Xiaoliang He, Wei Liu, Jianguo Zhou, . Application of high-resolution acoustooptic deflector on spectrum analysis. Piezoelectrics & Acoustooptics, 27, 16-17, 28(2005).
[40] Kuanxin Yu, Yinmei Mi, Meng Suo. Optimal design of TeO2 ultrasonic beam steering anisotropic acousto-optic deflector. Piezoelectrics & Acoustooptics, 29, 510-512, 529(2007).
[41] Zehong Zhang, Chuan Lu, Xiaoliang He, . Study on acousto-optic deflector based on gallium phosphide. Piezoelectrics & Acoustooptics, 36, 694-697(2014).
[42] Zehong Zhang, Xiaoliang He. Abnormal acousto-optic deflector with large-bandwidth. Piezoelectrics & Acoustooptics, 38, 837-839(2016).
[43] Qian Xia, Qinghua Chen, Zehong Zhang, . Study on antistatic of high frequency acousto-optic deflector. Piezoelectrics & Acoustooptics, 43, 51-53, 58(2021).
[44] McManamon P F. An overview of optical phased array technology status [C]Proceedings of SPIE, 2005, 5947: 594701.
[50] Jian Zhang, Lin Xu, Liying Wu, . Programmable beam steering based on liquid crystal optical phased array. Acta Photonica Sinica, 37, 1497-1502(2008).
[51] Sun Yangdong. Research application of phased array laser radar wave control technology[D]. Chengdu: University of Electronic Science Technology of China, 2011. (in Chinese)
[53] P F Mcmanamon. Agile Nonmechanical beam steering. Optical Photonics News, 17, 24-29(2006).
[55] Watson E A, Whitaker W E, Brewer C D, et al. Implementing optical phased array beam steering with caded microlens arrays [C]Proceedings of the IEEE Aerospace Conference, 2002: 14291436.
[60] Dong Shan. Research on beam steering with microlens arrays[D]. Wuhan: Huazhong University of Science & Technology, 2007. (in Chinese)
[61] Hongbo Xie, Yao Wang, Chensheng Mao, . Micro-lens array for integrative transmitting and receiving continuous scanning. Journal of Applied Optics, 39, 613-618(2018).
[62] Chen Mingce, Li Zheng, Shao Qi, et al. A new type of liquidcrystal cylindrical microlens arrays with nonunifm microcoil electrodes [C]Proceedings of SPIE, 2019, 10941: 109410U.
[64] Xu Yang, Chao Geng, Xiaoyang Li, . Review of microlens array optical phased array beam scanning technique. High Power Laser and Particle Beams, 33, 69-79(2021).
[65] Oh C, Kim J, Muth J M, et al. A new beam steering concept: Risley gratings [C]Proceedings of SPIE, 2009, 7466: 74660J.
[66] Kim J, Oh C, Escuti M J, et al. Wideangle nonmechanical beam steering using thin liquid crystal polarization gratings [C]Proceedings of SPIE, 2008, 7093: 709302.
[67] Kim J, Miskiewicz M N, Serati S. High efficiency quasiternary design f nonmechanical beamsteering utilizing polarization gratings [C]Proceedings of SPIE, 2010, 7816: 78160G.
[68] Kim J, Miskiewicz M N, Serati S, et al. Demonstration of largeangle nonmechanical laser beam steering based on LC polymer polarization gratings [C]Proceedings of SPIE, 2011, 8052: 80520T.
[69] J Kim, M N Miskiewicz, S Serati, et al. Nonmechanical laser beam steering based on polymer polarization gratings: design optimization and demonstration. Journal of Lightwave Technology, 33, 2086-2077(2015).
[72] Huang Shuaijia. The beam steering applications of polymer wk liquid crystal devices[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)
[75] Li Songzhen. Design of liquid crystal polarizationn grating study of its beam deflect acteristics[D]. Beijing: University of Chinese Academy of Sciences, 2019. (in Chinese)
[76] Bing Liu, Xuping Wang, Yuguo Yang, . Principles, devices, and applications of beam deflection based on quadratic electro-optic effect of potassium tantalate niobate. Laser & Optoelectronics Progress, 57, 071609(2020).
[77] Guochang Xu. The characteristics and design of the electro-optic deflector with quadrupole electrodes. Journal of Southeast University, 22, 13-17(1992).
[78] Yuexia Ai, Jingzhen Li, Xiangdong Gong. Studies on electro-optic deflector with hypersurface electrode struture. Acta Photonica Sinica, 35, 33-36(2006).
[82] K Nakamara, J Miyazu, Y Shogo. High-resolution KTN optical beam scanner. NTT Technical Review, 7, 1-6(2009).
[85] Sasaki Y, Toyoda S, Sakamoto T, et al. Electrooptic KTN deflect stabilized with 405 nm light irradiation f wavelengthswept light source [C]Proceedings of SPIE, 2017, 10100: 101000H.
[86] S Tatsumi, T Imai, J Yamaguchi. Reduction of ambient temperature dependence of KTa1−
[87] Chao J H, Zhu W B, Wang C, et al. Nanosecond speed preinjected space ge controlled KTN beam deflect [C]Proceedings of SPIE, 2015, 9586: 95860T.
[95] Tang Y J, Wang J Y, Wang X P, et al. KTNbased electrooptic beam scanner [C]Proceedings of SPIE, 2008, 7135: 713538.
[97] Wang Shuang. The applied research of the temperature controlled light beam deflection based on lithium niobate crystal [D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
[99] Ma Xiangguo. Study on the they experiment of optical programmable electronically controlled beam deflection [D]. Tianjin: Tianjin University, 2019. (in Chinese)
[100] Xing Bohan. Study on controllable frequency doubling modulation deflection properties of lithium niobate crystal [D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)