• Photonics Research
  • Vol. 12, Issue 3, 411 (2024)
Darcy L. Smith1、2、3、4、†,*, Linh V. Nguyen3、4、†, Mohammad I. Reja1、3, Erik P. Schartner1, Heike Ebendorff-Heidepriem1, David J. Ottaway1、2, and Stephen C. Warren-Smith3、4
Author Affiliations
  • 1Institute for Photonics and Advanced Sensing and School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
  • 2Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav), Adelaide, SA, Australia
  • 3Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
  • 4Laser Physics and Photonics Devices Laboratory, University of South Australia, Mawson Lakes, SA 5095, Australia
  • show less
    DOI: 10.1364/PRJ.507542 Cite this Article Set citation alerts
    Darcy L. Smith, Linh V. Nguyen, Mohammad I. Reja, Erik P. Schartner, Heike Ebendorff-Heidepriem, David J. Ottaway, Stephen C. Warren-Smith. Harnessing the power of complex light propagation in multimode fibers for spatially resolved sensing[J]. Photonics Research, 2024, 12(3): 411 Copy Citation Text show less
    References

    [1] Ligo Scientific. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116, 061102(2016).

    [2] S. Hippler. Adaptive optics for extremely large telescopes. J. Astron. Instrum., 08, 1950001(2018).

    [3] H. Cao, Y. G. Zhao, S. T. Ho. Random laser action in semiconductor powder. Phys. Rev. Lett., 82, 2278-2281(1999).

    [4] D. S. Wiersma, A. Lagendijk. Light diffusion with gain and random lasers. Phys. Rev. E, 54, 4256-4265(1996).

    [5] B. Redding, M. A. Choma, H. Cao. Speckle-free laser imaging using random laser illumination. Nat. Photonics, 6, 355-359(2012).

    [6] R. N. Mahalati, R. Y. Gu, J. M. Kahn. Resolution limits for imaging through multi-mode fiber. Opt. Express, 21, 1656-1668(2013).

    [7] S. Turtaev, I. T. Leite, T. Altwegg-Boussac. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci. Appl., 7, 92(2018).

    [8] I. T. Leite, S. Turtaev, D. E. B. Flaes. Observing distant objects with a multimode fiber-based holographic endoscope. APL Photon., 6, 036112(2021).

    [9] T. Čižmár, K. Dholakia. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun., 3, 1027(2012).

    [10] B. Redding, M. Alam, M. Seifert. High-resolution and broadband all-fiber spectrometers. Optica, 1, 175-180(2014).

    [11] B. Redding, H. Cao. Using a multimode fiber as a high-resolution, low-loss spectrometer. Opt. Lett., 37, 3384-3386(2012).

    [12] W. Xiong, B. Redding, S. Gertler. Deep learning of ultrafast pulses with a multimode fiber. APL Photon., 5, 096106(2020).

    [13] R. Florentin, V. Kermene, J. Benoist. Shaping the light amplified in a multimode fiber. Light Sci. Appl., 6, e16208(2017).

    [14] O. Tzang, A. M. Caravaca-Aguirre, K. Wagner. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres. Nat. Photonics, 12, 368-374(2018).

    [15] M. W. Matthès, Y. Bromberg, J. de Rosny. Learning and avoiding disorder in multimode fibers. Phys. Rev. X, 11, 021060(2021).

    [16] B. Rahmani, D. Loterie, G. Konstantinou. Multimode optical fiber transmission with a deep learning network. Light Sci. Appl., 7, 69(2018).

    [17] Q. Zhang, S. Rothe, N. Koukourakis. Learning the matrix of few-mode fibers for high-fidelity spatial mode transmission. APL Photon., 7, 066104(2022).

    [18] S. Resisi, Y. Viernik, S. M. Popoff. Wavefront shaping in multimode fibers by transmission matrix engineering. APL Photon., 5, 036103(2020).

    [19] K. T. V. Grattan, L. S. Grattan, B. T. Meggitt. Optical Fiber Sensor Technology: Fundamentals(2000).

    [20] A. G. Leal-Junior, A. Frizera, C. Marques. Optical fiber specklegram sensors for mechanical measurements: a review. IEEE Sens. J., 20, 569-576(2020).

    [21] T. D. Cabral, E. Fujiwara, S. C. Warren-Smith. Multimode exposed core fiber specklegram sensor. Opt. Lett., 45, 3212-3215(2020).

    [22] E. Fujiwara, M. F. Marques dos Santos, C. K. Suzuki. Optical fiber specklegram sensor analysis by speckle pattern division. Appl. Opt., 56, 1585-1590(2017).

    [23] F. T. S. Yu, M. Wen, S. Yin. Submicrometer displacement sensing using inner-product multimode fiber speckle fields. Appl. Opt., 32, 4685-4689(1993).

    [24] D. L. Smith, L. V. Nguyen, D. J. Ottaway. Machine learning for sensing with a multimode exposed core fiber specklegram sensor. Opt. Express, 30, 10443-10455(2022).

    [25] G. Li, Y. Liu, Q. Qin. Deep learning based optical curvature sensor through specklegram detection of multimode fiber. Opt. Laser Technol., 149, 107873(2022).

    [26] L. V. Nguyen, C. C. Nguyen, G. Carneiro. Sensing in the presence of strong noise by deep learning of dynamic multimode fiber interference. Photon. Res., 9, B109-B118(2021).

    [27] P. Lu, N. Lalam, M. Badar. Distributed optical fiber sensing: review and perspective. Appl. Phys. Rev., 6, 041302(2019).

    [28] A. Motil, A. Bergman, M. Tur. State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol., 78, 81-103(2016).

    [29] R. Alan. Distributed optical-fibre sensing. Meas. Sci. Technol., 10, R75(1999).

    [30] A. Denisov, M. A. Soto, L. Thévenaz. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration. Light Sci. Appl., 5, e16074(2016).

    [31] T. Horiguchi, K. Shimizu, T. Kurashima. Development of a distributed sensing technique using Brillouin scattering. J. Lightwave Technol., 13, 1296-1302(1995).

    [32] S. Lu, Z. Tan, G. Li. A sensitized plastic fiber sensor for multi-point bending measurement based on deep learning. IEEE Photon. J., 13, 8600107(2021).

    [33] A. R. Cuevas, M. Fontana, L. Rodriguez-Cobo. Machine learning for turning optical fiber specklegram sensor into a spatially-resolved sensing system. Proof of concept. J. Lightwave Technol., 36, 3733-3738(2018).

    [34] M. Wei, G. Tang, J. Liu. Neural network based perturbation-location fiber specklegram sensing system towards applications with limited number of training samples. J. Lightwave Technol., 39, 6315-6326(2021).

    [35] T. Habisreuther, T. Elsmann, Z. Pan. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Appl. Thermal Eng., 91, 860-865(2015).

    [36] T. Elsmann, T. Habisreuther, A. Graf. Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation. Opt. Express, 21, 4591-4597(2013).

    [37] K.-P. Ho, J. Kahn. Mode coupling and its impact on spatially multiplexed systems. Opt. Fiber Telecommun., 17, 1386-1392(2013).

    [38] J. Carpenter, B. J. Eggleton, J. Schröder. Comparison of principal modes and spatial eigenmodes in multimode optical fibre. Laser Photon. Rev., 11, 1600259(2017).

    [39] R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith. Predicting the drawing conditions for microstructured optical fiber fabrication. Opt. Mater. Express, 4, 29-40(2014).

    [40] L. V. Nguyen, S. C. Warren-Smith, H. Ebendorff-Heidepriem. Interferometric high temperature sensor using suspended-core optical fibers. Opt. Express, 24, 8967-8977(2016).

    [41] S. C. Warren-Smith, L. V. Nguyen, C. Lang. Temperature sensing up to 1300°C using suspended-core microstructured optical fibers. Opt. Express, 24, 3714-3719(2016).

    [42] S. Warren-Smith, E. Schartner, L. V. Nguyen. Stability of grating-based optical fiber sensors at high temperature. IEEE Sens. J., 19, 2978-2983(2019).

    [43] E. P. Schartner, S. C. Warren-Smith, L. V. Nguyen. Single-peak fiber Bragg gratings in suspended-core optical fibers. Opt. Express, 28, 23354-23362(2020).

    [44] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning(2009).

    [45] R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405, 947-951(2000).

    [46] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proc. IEEE, 78, 1550-1560(1990).

    [47] D. Kingma, J. Ba. Adam: a method for stochastic optimization. International Conference on Learning Representations(2014).

    [48] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning(2016).

    Darcy L. Smith, Linh V. Nguyen, Mohammad I. Reja, Erik P. Schartner, Heike Ebendorff-Heidepriem, David J. Ottaway, Stephen C. Warren-Smith. Harnessing the power of complex light propagation in multimode fibers for spatially resolved sensing[J]. Photonics Research, 2024, 12(3): 411
    Download Citation