• Photonics Research
  • Vol. 11, Issue 3, B65 (2023)
Jian Wei You1、6、*, Zhihao Lan2, Qian Ma1, Zhen Gao3, Yihao Yang4, Fei Gao4, Meng Xiao5, and Tie Jun Cui1、7、*
Author Affiliations
  • 1State Key Laboratory of Millimetre Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
  • 2Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, UK
  • 3Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 4State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China
  • 5School of Physics and Technology, Wuhan University, Wuhan 430072, China
  • 6e-mail: jvyou@seu.edu.cn
  • 7e-mail: tjcui@seu.edu.cn
  • show less
    DOI: 10.1364/PRJ.471905 Cite this Article Set citation alerts
    Jian Wei You, Zhihao Lan, Qian Ma, Zhen Gao, Yihao Yang, Fei Gao, Meng Xiao, Tie Jun Cui. Topological metasurface: from passive toward active and beyond[J]. Photonics Research, 2023, 11(3): B65 Copy Citation Text show less
    References

    [1] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [2] A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, Y. S. Kivshar. Functional and nonlinear optical metasurfaces. Laser Photon. Rev., 9, 195-213(2015).

    [3] H. T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [4] T. J. Cui, S. Liu, L. Zhang. Information metamaterials and metasurfaces. J. Mater. Chem. C, 5, 3644-3668(2017).

    [5] A. Nemati, Q. Wang, M. Hong, J. Teng. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv., 1, 18000901(2018).

    [6] A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, V. R. Tuz. Metasurface engineering through bound states in the continuum. Phys. Rev. Appl., 12, 014024(2019).

    [7] L. Li, H. Ruan, C. Liu, Y. Li, Y. Shuang, A. Alù, C. W. Qiu, T. J. Cui. Machine-learning reprogrammable metasurface imager. Nat. Commun., 10, 1082(2019).

    [8] S. Xiao, T. Wang, T. Liu, C. Zhou, X. Jiang, J. Zhang. Active metamaterials and metadevices: a review. J. Phys. D, 53, 503002(2020).

    [9] K. Du, H. Barkaoui, X. Zhang, L. Jin, Q. Song, S. Xiao. Optical metasurfaces towards multifunctionality and tunability. Nanophotonics, 11, 1761-1781(2022).

    [10] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [11] A. B. Khanikaev, G. Shvets. Two-dimensional topological photonics. Nat. Photonics, 11, 763-773(2017).

    [12] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [13] D. Smirnova, D. Leykam, Y. Chong, Y. Kivshar. Nonlinear topological photonics. Appl. Phys. Rev., 7, 021306(2020).

    [14] Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, S. Iwamoto. Active topological photonics. Nanophotonics, 9, 547-567(2020).

    [15] G. J. Tang, X. T. He, F. L. Shi, J. W. Liu, X. D. Chen, J. W. Dong. Topological photonic crystals: physics, designs, and applications. Laser Photon. Rev., 16, 2100300(2022).

    [16] H. Price, Y. Chong, A. Khanikaev, H. Schomerus, L. J. Maczewsky, M. Kremer, M. Heinrich, A. Szameit, O. Zilberberg, Y. Yang, B. Zhang. Roadmap on topological photonics. J. Phys. Photon., 4, 032501(2022).

    [17] M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, M. F. Limonov. Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commun., 6, 10102(2015).

    [18] K. Vynck, R. Pacanowski, A. Agreda, A. Dufay, X. Granier, P. Lalanne. The visual appearances of disordered optical metasurfaces. Nat. Mater., 21, 1035-1041(2022).

    [19] Z. Li, X. Tian, C. W. Qiu, J. S. Ho. Metasurfaces for bioelectronics and healthcare. Nat. Electron., 4, 382-391(2021).

    [20] A. S. Solntsev, G. S. Agarwal, Y. S. Kivshar. Metasurfaces for quantum photonics. Nat. Photonics, 15, 327-336(2021).

    [21] D. Neshev, I. Aharonovich. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl., 7, 58(2018).

    [22] S. Raghu, F. D. M. Haldane. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [23] Z. Wang, Y. Chong, J. D. Joannopoulos, M. Soljačić. Observation of unidirectional backscattering immune topological electromagnetic states. Nature, 461, 772-775(2009).

    [24] Y. Poo, R. X. Wu, Z. Lin, Y. Yang, C. T. Chan. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett., 106, 093903(2011).

    [25] S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, M. Soljačić. Experimental observation of large Chern numbers in photonic crystals. Phys. Rev. Lett., 115, 253901(2015).

    [26] X. Ni, D. Purtseladze, D. A. Smirnova, A. Slobozhanyuk, A. Alù, A. B. Khanikaev. Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators. Sci. Adv., 4, eaap8802(2018).

    [27] G. G. Liu, P. Zhou, Y. Yang, H. Xue, X. Ren, X. Lin, H. X. Sun, L. Bi, Y. Chong, B. Zhang. Observation of an unpaired photonic Dirac point. Nat. Commun., 11, 1873(2020).

    [28] F. F. Li, H. X. Wang, Z. Xiong, Q. Lou, P. Chen, R. X. Wu, Y. Poo, J. H. Jiang, S. John. Topological light-trapping on a dislocation. Nat. Commun., 9, 2462(2018).

    [29] L. He, Z. Addison, E. J. Mele, B. Zhen. Quadrupole topological photonic crystals. Nat. Commun., 11, 3119(2020).

    [30] P. Zhou, G. G. Liu, Y. Yang, Y. H. Hu, S. Ma, H. Xue, Q. Wang, L. Deng, B. Zhang. Observation of photonic antichiral edge states. Phys. Rev. Lett., 125, 263603(2020).

    [31] M. D. Wang, R. Y. Zhang, L. Zhang, D. Y. Wang, Q. H. Guo, Z. Q. Zhang, C. T. Chan. Topological one-way large-area waveguide states in magnetic photonic crystals. Phys. Rev. Lett., 126, 067401(2021).

    [32] M. Kim, J. Rho. Quantum Hall phase and chiral edge states simulated by a coupled dipole method. Phys. Rev. B, 101, 195105(2020).

    [33] Z. Zhang, P. Delplace, R. Fleury. Superior robustness of anomalous non-reciprocal topological edge states. Nature, 598, 293-297(2021).

    [34] C. L. Kane, E. J. Mele. Quantum spin Hall effect in graphene. Phys. Rev. Lett., 95, 226801(2005).

    [35] B. A. Bernevig, T. L. Hughes, S. C. Zhang. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 314, 1757-1761(2006).

    [36] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, S. C. Zhang. Quantum spin Hall insulator state in HgTe quantum wells. Science, 318, 766-770(2007).

    [37] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, G. Shvets. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [38] W. J. Chen, S. J. Jiang, X. D. Chen, B. Zhu, L. Zhou, J. W. Dong, C. T. Chan. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun., 5, 5782(2014).

    [39] T. Ma, A. B. Khanikaev, S. H. Mousavi, G. Shvets. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett., 114, 127401(2015).

    [40] X. Cheng, C. Jouvaud, X. Ni, S. H. Mousavi, A. Z. Genack, A. B. Khanikaev. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater., 15, 542-548(2016).

    [41] A. Slobozhanyuk, A. V. Shchelokova, X. Ni, S. H. Mousavi, D. A. Smirnova, P. A. Belov, A. Alù, Y. S. Kivshar, A. B. Khanikaev. Near-field imaging of spin-locked edge states in all-dielectric topological metasurfaces. Appl. Phys. Lett., 114, 031103(2019).

    [42] L. H. Wu, X. Hu. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett., 114, 223901(2015).

    [43] S. Yves, R. Fleury, T. Berthelot, M. Fink, F. Lemoult, G. Lerosey. Crystalline metamaterials for topological properties at subwavelength scales. Nat. Commun., 8, 16023(2017).

    [44] Y. Yang, Y. F. Xu, T. Xu, H.-X. Wang, J.-H. Jiang, X. Hu, Z. H. Hang. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett., 120, 217401(2018).

    [45] S. Peng, N. J. Schilder, X. Ni, J. van de Groep, M. L. Brongersma, A. Alù, A. B. Khanikaev, H. A. Atwater, A. Polman. Probing the band structure of topological silicon photonic lattices in the visible spectrum. Phys. Rev. Lett., 122, 117401(2019).

    [46] S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, E. Waks. A topological quantum optics interface. Science, 359, 666-668(2018).

    [47] N. Parappurath, F. Alpeggiani, L. Kuipers, E. Verhagen. Direct observation of topological edge states in silicon photonic crystals: spin, dispersion, and chiral routing. Sci. Adv., 6, eaaw4137(2020).

    [48] K. F. Mak, K. L. McGill, J. Park, P. L. McEuen. The valley Hall effect in MoS2 transistors. Science, 344, 1489-1492(2014).

    [49] L. Ju, Z. W. Shi, N. Nair, Y. C. Lv, C. H. Jin, J. Velasco, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, F. Wang. Topological valley transport at bilayer graphene domain walls. Nature, 520, 650-655(2015).

    [50] D. Xiao, W. Yao, Q. Niu. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett., 99, 236809(2007).

    [51] T. Ma, G. Shvets. All-Si valley-Hall photonic topological insulator. New J. Phys., 18, 025012(2016).

    [52] X. D. Chen, F. L. Zhao, M. Chen, J. W. Dong. Valley-contrasting physics in all-dielectric photonic crystals: orbital angular momentum and topological propagation. Phys. Rev. B, 96, 020202(2017).

    [53] J. W. Dong, X. D. Chen, H. Zhu, Y. Wang, X. Zhang. Valley photonic crystals for control of spin and topology. Nat. Mater., 16, 298-302(2017).

    [54] F. Gao, H. R. Xue, Z. J. Yang, K. F. Lai, Y. Yu, X. Lin, Y. D. Chong, G. Shvets, B. L. Zhang. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys., 14, 140-144(2017).

    [55] Z. Gao, Z. J. Yang, F. Gao, H. R. Xue, Y. H. Yang, J. W. Dong, B. L. Zhang. Valley surface-wave photonic crystal and its bulk/edge transport. Phys. Rev. B, 96, 201402(2017).

    [56] T. Ma, G. Shvets. Scattering-free edge states between heterogeneous photonic topological insulators. Phys. Rev. B, 95, 165102(2017).

    [57] P. P. Qiu, R. Liang, W. B. Qiu, H. B. Chen, J. B. Ren, Z. L. Lin, J. X. Wang, Q. Kan, J. Q. Pan. Topologically protected edge states in graphene plasmonic crystals. Opt. Express, 25, 22587-22594(2017).

    [58] X. X. Wu, Y. Meng, J. X. Tian, Y. Z. Huang, H. Xiang, D. Z. Han, W. J. Wen. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat. Commun., 8, 1304(2017).

    [59] L. Ye, Y. Yang, Z. H. Hang, C. Qiu, Z. Liu. Observation of valley-selective microwave transport in photonic crystals. Appl. Phys. Lett., 111, 251107(2017).

    [60] X. D. Chen, W. M. Deng, J. C. Lu, J. W. Dong. Valley-controlled propagation of pseudospin states in bulk metacrystal waveguides. Phys. Rev. B, 97, 184201(2018).

    [61] X. D. Chen, F. L. Shi, H. Liu, J. C. Lu, W. M. Deng, J. Y. Dai, Q. Cheng, J. W. Dong. Tunable electromagnetic flow control in valley photonic crystal waveguides. Phys. Rev. Appl., 10, 044002(2018).

    [62] Y. Kang, X. Ni, X. Cheng, A. B. Khanikaev, A. Z. Genack. Pseudo-spin-valley coupled edge states in a photonic topological insulator. Nat. Commun., 9, 3029(2018).

    [63] J. Noh, S. Huang, K. P. Chen, M. C. Rechtsman. Observation of photonic topological valley Hall edge states. Phys. Rev. Lett., 120, 063902(2018).

    [64] Q. L. Chen, L. Zhang, M. J. He, Z. J. Wang, X. Lin, F. Gao, Y. H. Yang, B. L. Zhang, H. S. Chen. Valley-Hall photonic topological insulators with dual-band kink states. Adv. Opt. Mater., 7, 1900036(2019).

    [65] X. D. Chen, X. T. He, J. W. Dong. All-dielectric layered photonic topological insulators. Laser Photon. Rev., 13, 1900091(2019).

    [66] W. M. Deng, X. D. Chen, W. J. Chen, F. L. Zhao, J. W. Dong. Vortex index identification and unidirectional propagation in kagome photonic crystals. Nanophotonics, 8, 833-840(2019).

    [67] X. T. He, E. T. Liang, J. J. Yuan, H. Y. Qiu, X. D. Chen, F. L. Zhao, J. W. Dong. A silicon-on-insulator slab for topological valley transport. Nat. Commun., 10, 872(2019).

    [68] J. Ma, X. Xi, X. Sun. Topological photonic integrated circuits based on valley kink states. Laser Photon. Rev., 13, 1900087(2019).

    [69] M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, N. M. Litchinitser. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol., 14, 31-34(2019).

    [70] D. H. Song, D. Leykam, J. Su, X. Y. Liu, L. Q. Tang, S. Liu, J. L. Zhao, N. K. Efremiths, J. J. Xu, Z. G. Chen. Valley vortex states and degeneracy lifting via photonic higher-band excitation. Phys. Rev. Lett., 122, 123903(2019).

    [71] X. X. Wu, Z. Y. Li, J. Chen, X. Li, J. X. Tian, Y. Z. Huang, S. X. Wang, W. X. Lu, B. Hou, C. T. Chan, W. J. Wen. Interlayer topological transport and devices based on layer pseudospins in photonic valley-hall phases. Adv. Opt. Mater., 7, 1900872(2019).

    [72] L. Zhang, Y. H. Yang, M. J. He, H. X. Wang, Z. J. Yang, E. P. Li, F. Gao, B. L. Zhang, R. Singh, J. H. Jiang, H. S. Chen. Valley kink states and topological channel intersections in substrate-integrated photonic circuitry. Laser Photon. Rev., 13, 1900159(2019).

    [73] A. M. Dubrovkin, U. Chattopadhyay, B. Qiang, O. Buchnev, Q. J. Wang, Y. D. Chong, N. I. Zheludev. Near-field mapping of the edge mode of a topological valley slab waveguide at λ=1.55μm. Appl. Phys. Lett., 116, 191105(2020).

    [74] L. He, H. Y. Ji, Y. J. Wang, X. D. Zhang. Topologically protected beam splitters and logic gates based on two-dimensional silicon photonic crystal slabs. Opt. Express, 28, 34015-34023(2020).

    [75] Y. Li, Y. Yu, F. Liu, B. Zhang, G. Shvets. Topology-controlled photonic cavity based on the near-conservation of the valley degree of freedom. Phys. Rev. Lett., 125, 213902(2020).

    [76] X. Xi, K. P. Ye, R. X. Wu. Topological photonic crystal of large valley Chern numbers. Photon. Res., 8, B1-B7(2020).

    [77] P. Yang, P. Jiang, X. Guo, L. Hou. Topologically protected Mach-Zehnder interferometer. J. Opt., 22, 105001(2020).

    [78] S. Arora, T. Bauer, R. Barczyk, E. Verhagen, L. Kuipers. Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths. Light Sci. Appl., 10, 9(2021).

    [79] K. H. Kim, K. K. Om. Multiband photonic topological valley-hall edge modes and second-order corner states in square lattices. Adv. Opt. Mater., 9, 2001865(2021).

    [80] J. W. Liu, F. L. Shi, X. T. He, G. J. Tang, W. J. Chen, X. D. Chen, J. W. Dong. Valley photonic crystals. Adv. Phys. X, 6, 1905546(2021).

    [81] H. Xue, Y. Yang, B. Zhang. Topological valley photonics: physics and device applications. Adv. Photon. Res., 2, 2100013(2021).

    [82] J. W. You, Z. Lan, Q. Bao, N. C. Panoiu. Valley-Hall topological plasmons in a graphene nanohole plasmonic crystal waveguide. IEEE J. Sel. Top. Quantum Electron., 26, 4600308(2020).

    [83] Y. Wang, J. W. You, Z. Lan, N. C. Panoiu. Topological valley plasmon transport in bilayer graphene metasurfaces for sensing applications. Opt. Lett., 45, 3151-3154(2020).

    [84] H. W. Wang, L. Sun, Y. He, G. J. Tang, S. H. An, Z. Wang, Y. H. Du, Y. Zhang, L. Q. Yuan, X. T. He, J. W. Dong, Y. K. Su. Asymmetric topological valley edge states on silicon-on-insulator platform. Laser Photon. Rev., 16, 2100631(2022).

    [85] Q. L. Chen, L. Zhang, F. J. Chen, Q. H. Yan, R. Xi, H. S. Chen, Y. H. Yang. Photonic topological valley-locked waveguides. ACS Photon., 8, 1400-1406(2021).

    [86] Y. H. Yang, Y. Yamagami, X. B. Yu, P. Pitchappa, J. Webber, B. L. Zhang, M. Fujita, T. Nagatsuma, R. Singh. Terahertz topological photonics for on-chip communication. Nat. Photonics, 14, 446-451(2020).

    [87] S. Raghu, F. D. M. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A, 78, 033834(2008).

    [88] Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett., 100, 013905(2008).

    [89] M. Hafezi, E. A. Demler, M. D. Lukin, J. M. Taylor. Robust optical delay lines with topological protection. Nat. Phys., 7, 907-912(2011).

    [90] D. Xiao, M. C. Chang, Q. Niu. Berry phase effects on electronic properties. Rev. Mod. Phys., 82, 1959-2007(2010).

    [91] E. Berg, M. Rudner, E. Demler, T. Kitagawa. Topological characterization of periodically driven quantum systems. Phys. Rev. B, 82, 235114(2010).

    [92] S. Yin, E. Galiffi, A. Alù. Floquet metamaterials. eLight, 2, 8(2022).

    [93] Y. T. Katan, D. Podolsky. Modulated Floquet topological insulators. Phys. Rev. Lett., 110, 016802(2013).

    [94] N. H. Lindner, G. Refael, V. Galitski. Floquet topological insulator in semiconductor quantum wells. Nat. Phys., 7, 490-495(2011).

    [95] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger. Experimental realization of the topological Haldane model with ultracold fermions. Nature, 515, 237-240(2014).

    [96] K. Fang, Z. Yu, S. Fan. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics, 6, 782-787(2012).

    [97] M. Minkov, V. Savona. Haldane quantum Hall effect for light in a dynamically modulated array of resonators. Optica, 3, 200-206(2016).

    [98] K. Fang, Y. Wang. Anomalous quantum Hall effect of light in Bloch-wave modulated photonic crystals. Phys. Rev. Lett., 122, 233904(2019).

    [99] L. He, Z. Addison, J. Jin, E. J. Mele, S. G. Johnson, B. Zhen. Floquet Chern insulators of light. Nat. Commun., 10, 4194(2019).

    [100] M. Li, X. Ni, M. Weiner, A. Alù, A. B. Khanikaev. Topological phases and nonreciprocal edge states in non-Hermitian Floquet insulators. Phys. Rev. B, 100, 045423(2019).

    [101] F. D. M. Haldane. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett., 61, 2015-2018(1988).

    [102] G. Q. Liang, Y. D. Chong. Optical resonator analog of a two-dimensional topological insulator. Phys. Rev. Lett., 110, 203904(2013).

    [103] M. Pasek, Y. D. Chong. Network models of photonic Floquet topological insulators. Phys. Rev. B, 89, 075113(2014).

    [104] F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, B. Zhang. Probing topological protection using a designer surface plasmon structure. Nat. Commun., 7, 11619(2016).

    [105] Z. Gao, F. Gao, Y. Zhang, Y. Luo, B. Zhang. Flexible photonic topological insulator. Adv. Opt. Mater., 6, 1800532(2018).

    [106] S. Afzal, T. J. Zimmerling, Y. Ren, D. Perron, V. Van. Realization of anomalous floquet insulators in strongly coupled nanophotonic lattices. Phys. Rev. Lett., 124, 253601(2020).

    [107] T. Dai, Y. Ao, J. Bao, J. Mao, Y. Chi, Z. Fu, Y. You, X. Chen, C. Zhai, B. Tang, Y. Yang, Z. Li, L. Yuan, F. Gao, X. Lin, M. G. Thompson, J. L. O. Brien, Y. Li, X. Hu, Q. Gong, J. Wang. Topologically protected quantum entanglement emitters. Nat. Photonics, 16, 248-257(2022).

    [108] S. Yao, Z. Wang. Edge states and topological invariants of non-hermitian systems. Phys. Rev. Lett., 121, 86803(2018).

    [109] M. Miri, A. Alù. Exceptional points in optics and photonics. Science, 363, r7709(2019).

    [110] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432, 200-203(2004).

    [111] I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 4, 435-446(2005).

    [112] M. Kim, Z. Jacob, J. Rho. Recent advances in 2D, 3D and higher-order topological photonics. Light Sci. Appl., 9, 130(2020).

    [113] Z. Zhang, J. W. You, Z. Lan, N. C. Panoiu. Lattice topological edge and corner modes of photonic crystal slabs. J. Opt., 23, 095102(2021).

    [114] B. Y. Xie, H. F. Wang, H. X. Wang, X. Y. Zhu, J. H. Jiang, M. H. Lu, Y. F. Chen. Second-order photonic topological insulator with corner states. Phys. Rev. B, 98, 205147(2018).

    [115] X. D. Chen, W. M. Deng, F. L. Shi, F. L. Zhao, M. Chen, J. W. Dong. Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett., 122, 233902(2019).

    [116] B. Y. Xie, G. X. Su, H. F. Wang, H. Su, X. P. Shen, P. Zhan, M. H. Lu, Z. L. Wang, Y. F. Chen. Visualization of higher-order topological insulating phases in two-dimensional dielectric photonic crystals. Phys. Rev. Lett., 122, 233903(2019).

    [117] M. Kim, J. Rho. Topological edge and corner states in a two-dimensional photonic Su-Schrieffer-Heeger lattice. Nanophotonics, 9, 3227-3234(2020).

    [118] M. Li, D. Zhirihin, M. Gorlach, X. Ni, D. Filonov, A. Slobozhanyuk, A. Alu, A. B. Khanikaev. Higher-order topological states in photonic kagome crystals with long-range interactions. Nat. Photonics, 14, 89-94(2020).

    [119] A. Vakulenko, S. Kiriushechkina, M. Wang, M. Li, D. Zhirihin, X. Ni, S. Guddala, D. Korobkin, A. Alu, A. B. Khanikaev. Near-field characterization of higher-order topological photonic states at optical frequencies. Adv. Mater., 33, 2004376(2021).

    [120] Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, S. Iwamoto. Photonic crystal nanocavity based on a topological corner state. Optica, 6, 786-789(2019).

    [121] X. T. He, M. Y. Li, H. Y. Qiu, W. S. Ruan, L. D. Zhou, L. Liu, X. D. Chen, W. J. Chen, F. L. Zhao, J. W. Dong. In-plane excitation of a topological nanophotonic corner state at telecom wavelengths in a cross-coupled cavity. Photon. Res., 9, 1423-1431(2021).

    [122] A. S. Berestennikov, A. Vakulenko, S. Kiriushechkina, M. Li, Y. Li, L. E. Zelenkov, A. P. Pushkarev, M. A. Gorlach, A. L. Rogach, S. V. Makarov, A. B. Khanikaev. Enhanced photoluminescence of halide perovskite nanocrystals mediated by a higher-order topological metasurface. J. Phys. Chem. C, 125, 9884-9890(2021).

    [123] L. Liang, X. Zhou, J. H. Hu, H. X. Wang, J. H. Jiang, B. Hou. Rainbow trapping based on higher-order topological corner modes. Opt. Lett., 47, 1454-1457(2022).

    [124] Y. Chen, Z. Lan, J. Zhu. Inversely designed second-order photonic topological insulator with multiband corner states. Phys. Rev. Appl., 17, 054003(2022).

    [125] Y. Chen, F. Meng, Z. Lan, B. Jia, X. Huang. Dual-polarization second-order photonic topological insulators. Phys. Rev. Appl., 15, 034053(2021).

    [126] Y. Chen, Z. Lan, J. Zhu. Second-order topological phases in C4v-symmetric photonic crystals beyond the two-dimensional Su-Schrieffer-Heeger model. Nanophotonics, 11, 1345-1354(2022).

    [127] S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, M. Hafezi. Photonic quadrupole topological phases. Nat. Photonics, 13, 692-696(2019).

    [128] Y. Chen, Z. K. Lin, H. Chen, J. H. Jiang. Plasmon-polaritonic quadrupole topological insulators. Phys. Rev. B, 101, 041109(2020).

    [129] X. Zhou, Z. K. Lin, W. Lu, Y. Lai, B. Hou, J. H. Jiang. Twisted quadrupole topological photonic crystals. Laser Photon. Rev., 14, 2000010(2020).

    [130] J. Noh, W. A. Benalcazar, S. Huang, M. J. Collins, K. P. Chen, T. L. Hughes, M. C. Rechtsman. Topological protection of photonic mid-gap defect modes. Nat. Photonics, 12, 408-415(2018).

    [131] B. Xie, G. Su, H. F. Wang, F. Liu, L. Hu, S. Y. Yu, P. Zhan, M. H. Lu, Z. Wang, Y. F. Chen. Higher-order quantum spin Hall effect in a photonic crystal. Nat. Commun., 11, 3768(2020).

    [132] A. Dutt, M. Minkov, I. A. D. Williamson, S. Fan. Higher-order topological insulators in synthetic dimensions. Light Sci. Appl., 9, 131(2020).

    [133] Z. Yang, E. Lustig, G. Harari, Y. Plotnik, Y. Lumer, M. A. Bandres, M. Segev. Mode-locked topological insulator laser utilizing synthetic dimensions. Phys. Rev. X, 10, 011059(2020).

    [134] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, M. Soljačić. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [135] J. V. Neumann, E. Wigner. Über merkwürdige diskrete eigenwerte. Phys. Z., 30, 465-467(1929).

    [136] H. Friedrich, D. Wintgen. Interfering resonances and bound states in the continuum. Phys. Rev. A, 32, 3231-3242(1985).

    [137] S. Fan, J. D. Joannopoulos. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B., 65, 235112(2002).

    [138] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett., 107, 183901(2011).

    [139] J. Lee, B. Zhen, S. L. Chua, W. J. Qiu, J. D. Joannopoulos, M. Soljačić, O. Shapira. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett., 109, 067401(2012).

    [140] L. Carletti, K. Koshelev, C. De Angelis, Y. Kivshar. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys. Rev. Lett., 121, 033903(2018).

    [141] S. I. Azzam, V. M. Shalaev, A. Boltasseva, A. V. Kildishev. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 121, 253901(2018).

    [142] C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, M. Soljačić. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).

    [143] A. Cerjan, C. W. Hsu, M. C. Rechtsman. Bound states in the continuum through environmental design. Phys. Rev. Lett., 123, 023902(2019).

    [144] B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, M. Soljačić. Topological nature of optical bound states in the continuum. Phys. Rev. Lett., 113, 257401(2014).

    [145] H. M. Doeleman, F. Monticone, W. den Hollander, A. Alù, A. F. Koenderink. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat. Photonics, 12, 397(2018).

    [146] Y. W. Zhang, A. Chen, W. Z. Liu, C. W. Hsu, B. Wang, F. Guan, X. H. Liu, L. Shi, L. Lu, J. Zi. Observation of polarization vortices in momentum space. Phys. Rev. Lett., 120, 186103(2018).

    [147] J. C. Jin, X. F. Yin, L. F. Ni, M. Soljačić, B. Zhen, C. Peng. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature, 574, 501-504(2019).

    [148] M. Kang, S. Zhang, M. Xiao, H. Xu. Merging bound states in the continuum at off-high symmetry points. Phys. Rev. Lett., 126, 117402(2021).

    [149] M. Kang, L. Mao, S. P. Zhang, M. Xiao, H. X. Xu, C. T. Chan. Merging bound states in the continuum by harnessing higher-order topological charges. Light Sci. Appl., 11, 1(2022).

    [150] W. Z. Liu, B. Wang, Y. W. Zhang, J. J. Wang, M. X. Zhao, F. Guan, X. H. Liu, L. Shi, J. Zi. Circularly polarized states spawning from bound states in the continuum. Phys. Rev. Lett., 123, 116104(2019).

    [151] T. Yoda, M. Notomi. Generation and annihilation of topologically protected bound states in the continuum and circularly polarized states by symmetry breaking. Phys. Rev. Lett., 125, 053902(2020).

    [152] X. Yin, J. Jin, M. Soljačić, C. Peng, B. Zhen. Observation of topologically enabled unidirectional guided resonances. Nature, 580, 467-471(2020).

    [153] Y. Zeng, G. Hu, K. Liu, Z. Tang, C.-W. Qiu. Dynamics of topological polarization singularity in momentum space. Phys. Rev. Lett., 127, 176101(2021).

    [154] C. L. Zou, J. M. Cui, F. W. Sun, X. Xiong, X. B. Zou, Z. F. Han, G. C. Guo. Guiding light through optical bound states in the continuum for ultrahigh-Q microresonators. Laser Photon. Rev., 9, 114-119(2015).

    [155] X. W. Gao, B. Zhen, M. Soljačić, H. S. Chen, C. W. Hsu. Bound states in the continuum in fiber Bragg gratings. ACS Photon., 6, 2996-3002(2019).

    [156] M. Minkov, I. A. D. Williamson, M. Xiao, S. Fan. Zero-index bound states in the continuum. Phys. Rev. Lett., 121, 263901(2018).

    [157] T. Dong, J. J. Liang, S. Camayd-Munoz, Y. Y. Liu, H. N. Tang, S. Kita, P. P. Chen, X. J. Wu, W. G. Chu, E. Mazur, Y. Li. Ultra-low-loss on-chip zero-index materials. Light Sci. Appl., 10, 10(2021).

    [158] H. N. Tang, C. DeVault, S. A. Camayd-Munoz, Y. Y. Liu, D. C. Jia, F. Du, O. Mello, D. I. Vulis, Y. Li, E. Mazur. Low-loss zero-index materials. Nano Lett., 21, 914-920(2021).

    [159] Y. Lin, T. Feng, S. Lan, J. Liu, Y. Xu. “On-chip diffraction-free beam guiding beyond the light cone. Phys. Rev. Appl., 13, 064032(2020).

    [160] Y. Liu, W. Zhou, Y. Sun. Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs. Sensors, 17, 1861(2017).

    [161] S. Romano, G. Zito, S. Torino, G. Calafiore, E. Penzo, G. Coppola, S. Cabrini, I. Rendina, V. Mocella. Label-free sensing of ultralow-weight molecules with all-dielectric metasurfaces supporting bound states in the continuum. Photon. Res., 6, 726-733(2018).

    [162] F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. K. Liu, A. Tittl, V. Cevher, Y. Kivshar, H. Altug. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics, 13, 390-396(2019).

    [163] A. Leitis. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv., 5, eaaw2871(2019).

    [164] Y. Chen, C. Zhao, Y. Zhang, C. W. Qiu. Integrated molar chiral sensing based on high-Q metasurface. Nano Lett., 20, 8696-8703(2020).

    [165] J. Lv, Z. Chen, X. Yin, Z. Zhang, W. Hu, C. Peng. High-sensitive refractive index sensing enabled by topological charge evolution. IEEE Photon. J., 12, 4501610(2020).

    [166] B. Wang, W. Liu, M. Zhao, J. Wang, Y. Zhang, A. Chen, F. Guan, X. Liu, L. Shi, J. Zi. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photonics, 14, 623-628(2020).

    [167] T. H. Skyrme. A non-linear field theory. Proc. R. Soc. London Ser. A, 260, 127-138(1961).

    [168] T. H. R. Skyrme. A unified field theory of mesons and baryons. Nucl. Phys., 31, 556-569(1962).

    [169] I. Zahed, G. E. Brown. The Skyrme model. Phys. Rep., 142, 1-102(1986).

    [170] A. O. Leonov, I. E. Dragunov, U. K. Rößler, A. N. Bogdanov. Theory of skyrmion states in liquid crystals. Phys. Rev. E, 90, 042502(2014).

    [171] U. Al Khawaja, H. Stoof. Skyrmions in a ferromagnetic Bose-Einstein condensate. Nature, 411, 918-920(2001).

    [172] Y. Tokura, N. Kanazawa. Magnetic skyrmion materials. Chem. Rev., 121, 2857-2897(2021).

    [173] A. Fert, N. Reyren, V. Cros. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater., 2, 17031(2017).

    [174] X. Zhang, Y. Zhou, K. M. Song, T.-E. Park, J. Xia, M. Ezawa, X. Liu, W. Zhao, G. Zhao, S. Woo. Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications. J. Phys. Condens. Matter, 32, 143001(2020).

    [175] I. L. Fernandes, S. Blügel, S. Lounis. Spin-orbit enabled all-electrical readout of chiral spin-textures. Nat. Commun., 13, 1576(2022).

    [176] L. Han, C. Addiego, S. Prokhorenko, M. Wang, H. Fu, Y. Nahas, X. Yan, S. Cai, T. Wei, Y. Fang, H. Liu, D. Ji, W. Guo, Z. Gu, Y. Yang, P. Wang, L. Bellaiche, Y. Chen, D. Wu, Y. Nie, X. Pan. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature, 603, 63-67(2022).

    [177] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Neubauer, R. Georgii, P. Böni. Skyrmion lattice in a chiral magnet. Science, 323, 915-919(2009).

    [178] B. Göbel, I. Mertig, O. A. Tretiakov. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Rep., 895, 1-28(2021).

    [179] N. Nagaosa, Y. Tokura. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol., 8, 899-911(2013).

    [180] P. Milde, D. Kohler, J. Seidel, L. M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Muhlbauer, C. Pfleiderer, S. Buhrandt, C. Schutte, A. Rosch. Unwinding of a skyrmion lattice by magnetic monopoles. Science, 340, 1076-1080(2013).

    [181] I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L. M. Eng, J. S. White, H. M. Rønnow, C. D. Dewhurst. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nat. Mater., 14, 1116-1122(2015).

    [182] S. Bera, S. S. Mandal. Theory of the skyrmion, meron, antiskyrmion, and antimeron in chiral magnets. Phys. Rev. Res., 1, 033109(2019).

    [183] H. Jani, J. C. Lin, J. Chen, J. Harrison, F. Maccherozzi, J. Schad, S. Prakash, C.-B. Eom, A. Ariando, T. Venkatesan, P. G. Radaelli. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature, 590, 74-79(2021).

    [184] L. Desplat, J. V. Kim, R. L. Stamps. Paths to annihilation of first- and second-order (anti)skyrmions via (anti)meron nucleation on the frustrated square lattice. Phys. Rev. B, 99, 174409(2019).

    [185] C. C. Li, P. Shi, L. P. Du, X. C. Yuan. Mapping the near-field spin angular momenta in the structured surface plasmon polariton field. Nanoscale, 12, 13674-13679(2020).

    [186] P. Shi, L. Du, X. Yuan. Strong spin-orbit interaction of photonic skyrmions at the general optical interface. Nanophotonics, 9, 4619-4628(2020).

    [187] P. Shi, L. Du, C. Li, A. V. Zayats, X. Yuan. Transverse spin dynamics in structured electromagnetic guided waves. Proc. Natl. Acad. Sci. USA, 118, e2018816118(2021).

    [188] X. Lei, L. Du, X. Yuan, A. V. Zayats. Optical spin-orbit coupling in the presence of magnetization: photonic skyrmion interaction with magnetic domains. Nanophotonics, 10, 3667-3675(2021).

    [189] Y. A. Dai, Z. K. Zhou, A. Ghosh, R. S. K. Mong, A. Kubo, C. B. Huang, H. Petek. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Nature, 588, 616-619(2020).

    [190] L. Xiong, Y. Li, D. Halbertal, M. Sammon, Z. Sun, S. Liu, J. H. Edgar, T. Low, M. M. Fogler, C. R. Dean, A. J. Millis, D. N. Basov. Polaritonic vortices with a half-integer charge. Nano Lett., 21, 9256-9261(2021).

    [191] A. Mostafavi, M. Samandari, M. Karvar, M. Ghovvati, Y. Endo, I. Sinha, N. Annabi, A. Tamayol. Colloidal multiscale porous adhesive (bio)inks facilitate scaffold integration. Appl. Phys. Rev., 8, 041415(2021).

    [192] Q. Zhang, Z. Xie, P. Shi, H. Yang, H. He, L. Du, X. Yuan. Optical topological lattices of Bloch-type skyrmion and meron topologies. Photon. Res., 10, 947-957(2022).

    [193] S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, G. Bartal. Optical skyrmion lattice in evanescent electromagnetic fields. Science, 361, 993-996(2018).

    [194] L. Du, A. Yang, A. V. Zayats, X. Yuan. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum. Nat. Phys., 15, 650-654(2019).

    [195] Q. Zhang, Z. Xie, L. Du, P. Shi, X. Yuan. Bloch-type photonic skyrmions in optical chiral multilayers. Phys. Rev. Res., 3, 023109(2021).

    [196] M. Krol, H. Sigurdsson, K. Rechcinska, P. Oliwa, K. Tyszka, W. Bardyszewski, A. Opala, M. Matuszewski, P. Morawiak, R. Mazur, W. Piecek, P. Kula, P. G. Lagoudakis, B. Pietka, J. Szczytko. Observation of second-order meron polarization textures in optical microcavities. Optica, 8, 255-261(2021).

    [197] A. Karnieli, S. Tsesses, G. Bartal, A. Arie. Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect. Nat. Commun., 12, 1092(2021).

    [198] A. Karnieli, A. Arie. All-optical Stern-Gerlach effect. Phys. Rev. Lett., 120, 053901(2018).

    [199] W. J. Jiang, X. C. Zhang, G. Q. Yu, W. Zhang, X. Wang, M. B. Jungfleisch, J. E. Pearson, X. M. Cheng, O. Heinonen, K. L. Wang, Y. Zhou, A. Hoffmann, S. G. E. Velthuis. Direct observation of the skyrmion Hall effect. Nat. Phys., 13, 162-169(2017).

    [200] G. Chen. Skyrmion Hall effect. Nat. Phys., 13, 112-113(2017).

    [201] R. Gutiérrez-Cuevas, E. Pisanty. Optical polarization skyrmionic fields in free space. J. Opt., 23, 024004(2021).

    [202] W. Lin, Y. Ota, Y. Arakawa, S. Iwamoto. Microcavity-based generation of full Poincare beams with arbitrary skyrmion numbers. Phys. Rev. Res., 3, 023055(2021).

    [203] Y. Shen, E. C. Martínez, C. Rosales-Guzmán. Generation of optical skyrmions with tunable topological textures. ACS Photon., 9, 296-303(2022).

    [204] F. Loder, A. P. Kampf, T. Kopp, D. Braak. Momentum-space spin texture in a topological superconductor. Phys. Rev. B, 96, 024508(2017).

    [205] T. Van Mechelen, Z. Jacob. Photonic Dirac monopoles and skyrmions: spin-1 quantization. Opt. Mater. Express, 9, 95-111(2019).

    [206] C. Guo, M. Xiao, Y. Guo, L. Yuan, S. Fan. Meron spin textures in momentum space. Phys. Rev. Lett., 124, 106103(2020).

    [207] C. Guo, M. Xiao, M. Orenstein, S. Fan. Structured 3D linear space-time light bullets by nonlocal nanophotonics. Light Sci. Appl., 10, 160(2021).

    [208] Y. Chen, Z. Lan, J. Li, J. Zhu. Topologically protected second harmonic generation via doubly resonant high-order photonic modes. Phys. Rev. B, 104, 155421(2021).

    [209] Z. Liu, J. Wang, B. Chen, Y. Wei, W. Liu, J. Liu. Giant enhancement of continuous wave second harmonic generation from few-layer GaSe coupled to high-Q quasi bound states in the continuum. Nano Lett., 21, 7405-7410(2021).

    [210] Z. Lan, J. W. You, Q. Ren, E. I. Wei, N. C. Panoiu. Second-harmonic generation via double topological valley-Hall kink modes in all-dielectric photonic crystals. Phys. Rev. A, 103, L041502(2021).

    [211] K. K. Om, K. H. Kim. Second-harmonic generation based on the dual-band second-order topological corner states. Phys. Status Solidi RRL, 16, 2100427(2022).

    [212] H. Zhou, J. Ma, K. Guo, F. Chen, K. Zhou, S. Liu, Z. Guo. Controllable second harmonic generation based on topological spin-dependent edge states. J. Appl. Phys., 131, 113101(2022).

    [213] F. Ye, Y. Yu, X. Xi, X. Sun. Second-harmonic generation in etchless lithium niobate nanophotonic waveguides with bound states in the continuum. Laser Photon. Rev., 16, 2100429(2022).

    [214] C. Fang, Q. Yang, Q. Yuan, L. Gu, X. Gan, Y. Shao, Y. Liu, G. Han, Y. Hao. Efficient second-harmonic generation from silicon slotted nanocubes with bound states in the continuum. Laser Photon. Rev., 16, 2100498(2022).

    [215] D. Smirnova, S. Kruk, D. Leykam, F. Melik-Gaykazyan, D. Y. Choi, Y. Kivshar. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett., 123, 103901(2019).

    [216] K. Koshelev, Y. Tang, K. Li, D. Y. Choi, G. Li, Y. Kivshar. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photon., 6, 1639-1644(2019).

    [217] Z. Lan, J. W. You, N. C. Panoiu. Nonlinear one-way edge-mode interactions for frequency mixing in topological photonic crystals. Phys. Rev. B, 101, 155422(2020).

    [218] S. S. Kruk, W. Gao, D.-Y. Choi, T. Zentgraf, S. Zhang, Y. Kivshar. Nonlinear imaging of nanoscale topological corner states. Nano Lett., 21, 4592-4597(2021).

    [219] S. Mittal, V. V. Orre, E. A. Goldschmidt, M. Hafezi. Tunable quantum interference using a topological source of indistinguishable photon pairs. Nat. Photonics, 15, 542-548(2021).

    [220] S. Mittal, E. A. Goldschmidt, M. Hafezi. A topological source of quantum light. Nature, 561, 502-506(2018).

    [221] J. W. You, Z. Lan, N. C. Panoiu. Four-wave mixing of topological edge plasmons in graphene metasurfaces. Sci. Adv., 6, eaaz3910(2020).

    [222] S. Mittal, G. Moille, K. Srinivasan, Y. K. Chembo, M. Hafezi. Topological frequency combs and nested temporal solitons. Nat. Phys., 17, 1169-1176(2021).

    [223] Z. Jiang, Y. Ding, C. Xi, G. He, C. Jiang. Topological protection of continuous frequency entangled biphoton states. Nanophotonics, 10, 4019-4026(2021).

    [224] G. Zograf, K. Koshelev, A. Zalogina, V. Korolev, R. Hollinger, D. Y. Choi, M. Zuerch, C. Spielmann, B. Luther-Davies, D. Kartashov, S. V. Makarov. High-harmonic generation from resonant dielectric metasurfaces empowered by bound states in the continuum. ACS Photon., 9, 567-574(2022).

    [225] L. Kang, Y. Wu, X. Ma, S. Lan, D. H. Werner. High-harmonic optical vortex generation from photonic bound states in the continuum. Adv. Opt. Mater., 10, 2101497(2022).

    [226] L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M. Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Konotop, L. Torner, D. Bauer, A. Szameit. Nonlinearity-induced photonic topological insulator. Science, 370, 701-704(2020).

    [227] S. Mukherjee, M. C. Rechtsman. Observation of unidirectional solitonlike edge states in nonlinear Floquet topological insulators. Phys. Rev. X, 11, 041057(2021).

    [228] S. Mukherjee, M. C. Rechtsman. Observation of Floquet solitons in a topological bandgap. Science, 368, 856-859(2020).

    [229] M. S. Kirsch, Y. Zhang, M. Kremer, L. J. Maczewsky, S. K. Ivanov, Y. V. Kartashov, L. Torner, D. Bauer, A. Szameit, M. Heinrich. Nonlinear second-order photonic topological insulators. Nat. Phys., 17, 995-1000(2021).

    [230] H. Yang, J. Xu, Z. Xiong, X. Lu, R. Y. Zhang, H. Li, Y. Chen, S. Zhang. Optically reconfigurable spin-valley Hall effect of light in coupled nonlinear ring resonator lattice. Phys. Rev. Lett., 127, 043904(2021).

    [231] B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, B. Kanté. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science, 358, 636-640(2017).

    [232] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, B. Kanté. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [233] M. S. Hwang, H. C. Lee, K. H. Kim, K. Y. Jeong, S. H. Kwon, K. Koshelev, Y. Kivshar, H. G. Park. Ultralow-threshold laser using super-bound states in the continuum. Nat. Commun., 12, 4135(2021).

    [234] S. T. Ha, Y. H. Fu, N. K. Emani, Z. Pan, R. M. Bakker, R. Paniagua-Domínguez, A. I. Kuznetsov. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol., 13, 1042-1047(2018).

    [235] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, M. Khajavikhan. Topological insulator laser: experiments. Science, 359, eaar4005(2018).

    [236] Y. Gong, S. Wong, A. J. Bennett, D. L. Huffaker, S. S. Oh. Topological insulator laser using valley-Hall photonic crystals. ACS Photon., 7, 2089-2097(2020).

    [237] Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong. Electrically pumped topological laser with valley edge modes. Nature, 578, 246-250(2020).

    [238] W. Zhang, X. Xie, H. Hao, J. Dang, S. Xiao, S. Shi, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, X. Xu. Low-threshold topological nanolasers based on the second-order corner state. Light Sci. Appl., 9, 109(2020).

    [239] H. R. Kim, M. S. Hwang, D. Smirnova, K. Y. Jeong, Y. Kivshar, H. G. Park. Multipolar lasing modes from topological corner states. Nat. Commun., 11, 1(2020).

    [240] C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [241] Z. K. Shao, H. Z. Chen, S. Wang, X. R. Mao, Z. Q. Yang, S. L. Wang, X. X. Wang, X. Hu, R. M. Ma. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol., 15, 67-72(2020).

    [242] J. H. Choi, W. E. Hayenga, Y. G. Liu, M. Parto, B. Bahari, D. N. Christodoulides, M. Khajavikhan. Room temperature electrically pumped topological insulator lasers. Nat. Commun., 12, 3434(2021).

    [243] A. Dikopoltsev, T. H. Harder, E. Lustig, O. A. Egorov, J. Beierlein, A. Wolf, Y. Lumer, M. Emmerling, C. Schneider, S. Höfling, M. Segev, S. Klembt. Topological insulator vertical-cavity laser array. Science, 373, 1514-1517(2021).

    [244] S. Mohamed, J. Wang, H. Rekola, J. Heikkinen, B. Asamoah, L. Shi, T. K. Hakala. Controlling topology and polarization state of lasing photonic bound states in continuum. Laser Photon. Rev., 16, 2100574(2022).

    [245] Z. Liu, Y. Xu, Y. Lin, J. Xiang, T. H. Feng, Q. T. Cao, J. Li, S. Lan, J. Liu. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett., 123, 253901(2019).

    [246] M. Minkov, D. Gerace, S. Fan. Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum. Optica, 6, 1039-1045(2019).

    [247] L. Carletti, S. S. Kruk, A. A. Bogdanov, C. De Angelis, Y. Kivshar. High-harmonic generation at the nanoscale boosted by bound states in the continuum. Phys. Rev. Res., 1, 023016(2019).

    [248] K. Koshelev, S. Kruk, E. Melik-Gaykazyan, J. H. Choi, A. Bogdanov, H. G. Park, Y. Kivshar. Subwavelength dielectric resonators for nonlinear nanophotonics. Science, 367, 288-292(2020).

    [249] V. Kravtsov, E. Khestanova, F. A. Benimetskiy, T. Ivanova, A. K. Samusev, I. S. Sinev, D. Pidgayko, A. M. Mozharov, I. S. Mukhin, M. S. Lozhkin, Y. V. Kapitonov, A. S. Brichkin, V. D. Kulakovskii, I. A. Shelykh, A. I. Tartakovskii, P. M. Walker, M. S. Skolnick, D. N. Krizhanovskii, I. V. Iorsh. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci. Appl., 9, 56(2020).

    [250] A. P. Anthur, H. Z. Zhang, R. Paniagua-Dominguez, D. A. Kalashnikov, S. T. Ha, T. W. W. Mass, A. I. Kuznetsov, L. Krivitsky. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett., 20, 8745-8751(2020).

    [251] N. Bernhardt, K. Koshelev, S. J. U. White, K. W. C. Meng, J. E. Froch, S. Kim, T. T. Tran, D. Y. Choi, Y. Kivshar, A. S. Solntsev. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett., 20, 5309-5314(2020).

    [252] J. J. Wang, M. Clementi, M. Minkov, A. Barone, J. F. Carlin, N. Grandjean, D. Gerace, S. H. Fan, M. Galli, R. Houdre. Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum. Optica, 7, 1126-1132(2020).

    [253] G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, M. Segev. Topological insulator laser: theory. Science, 359, eaar4003(2018).

    [254] X. Gao, L. Yang, H. Lin, L. Zhang, J. Li, F. Bo, Z. Wang, L. Lu. Dirac-vortex topological cavities. Nat. Nanotechnol., 15, 1012-1018(2020).

    [255] L. Yang, G. Li, X. Gao, L. Lu. Topological-cavity surface-emitting laser. Nat. Photonics, 16, 279-283(2022).

    [256] W. Noh, H. Nasari, H. M. Kim, Q. Le-Van, Z. Jia, Z. C. H. Huang, B. Kanté. Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry. Opt. Lett., 45, 4108-4111(2020).

    [257] D. Smirnova, A. Tripathi, S. Kruk, M. S. Hwang, H. R. Kim, H. G. Park, Y. Kivshar. Room-temperature lasing from nanophotonic topological cavities. Light Sci. Appl., 9, 127(2020).

    [258] C. Han, M. Kang, H. Jeon. Lasing at multidimensional topological states in a two-dimensional photonic crystal structure. ACS Photon., 7, 2027-2036(2020).

    [259] M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, O. Nalamasu. Laser action from two-dimensional distributed feedback in photonic crystals. Appl. Phys. Lett., 74, 7-9(1999).

    [260] M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, G. Sasaki. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure. Appl. Phys. Lett., 75, 316-318(1999).

    [261] S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design. Science, 293, 1123-1125(2001).

    [262] E. Miyai, K. Sakai, T. Okano, E. Kunishi, D. Ohnishi, S. Noda. Lasers producing tailored beams. Nature, 441, 946(2006).

    [263] K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, S. Noda. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photonics, 8, 406-411(2014).

    [264] B. Bahari, F. Vallini, T. Lepetit, R. Tellez-Limon, J. H. Park, A. Kodigala, Y. Fainman, B. Kante. Integrated and steerable vortex lasers using bound states in continuum. arXiv(2017).

    [265] M. Jung, Z. Fan, G. Shvets. Midinfrared plasmonic valleytronics in metagate-tuned graphene. Phys. Rev. Lett., 121, 086807(2018).

    [266] M. I. Shalaev, S. Desnavi, W. Walasik, N. M. Litchinitser. Reconfigurable topological photonic crystal. New J. Phys., 20, 023040(2018).

    [267] Y. Wu, X. Hu, Q. Gong. Reconfigurable topological states in valley photonic crystals. Phys. Rev. Mater., 2, 122201(2018).

    [268] Y. Wang, W. Zhang, X. Zhang. Tunable topological valley transport in two-dimensional photonic crystals. New J. Phys., 21, 093020(2019).

    [269] J. W. You, Q. Ma, Z. Lan, Q. Xiao, N. C. Panoiu, T. J. Cui. Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun., 12, 5468(2021).

    [270] H. Abbaszadeh, M. Fruchart, W. van Saarloos, V. Vitelli. Liquid-crystal-based topological photonics. Proc. Natl. Acad. Sci. USA, 118, e2020525118(2021).

    [271] W. Hu, J. Hu, S. Wen, Y. Xiang. Dynamically reconfigurable topological states in photonic crystals with liquid crystals. Opt. Lett., 46, 2589-2592(2021).

    [272] Y. Zhao, F. Liang, X. Wang, D. Zhao, B. Z. Wang. Tunable and programmable topological valley transport in photonic crystals with liquid crystals. J. Phys. D, 55, 155102(2022).

    [273] A. Nagulu, X. Ni, A. Kord, M. Tymchenko, S. Garikapati, A. Alù, H. Krishnaswamy. Chip-scale Floquet topological insulators for 5G wireless systems. Nat. Electron., 5, 300-309(2022).

    [274] Z. A. Kudyshev, A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Tuning topology of photonic systems with transparent conducting oxides. ACS Photon., 6, 1922-1930(2019).

    [275] M. I. Shalaev, W. Walasik, N. M. Litchinitser. Optically tunable topological photonic crystal. Optica, 6, 839-844(2019).

    [276] H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, L. Feng. Non-Hermitian topological light steering. Science, 365, 1163-1166(2019).

    [277] E. S. Naz, I. C. Fulga, L. Ma, O. G. Schmidt, J. van den Brink. Topological phase transition in a stretchable photonic crystal. Phys. Rev. A, 98, 033830(2018).

    [278] H. X. Wang, H. Chen, J. H. Jiang, G. Y. Guo. Tunable edge states in reconfigurable photonic crystals. J. Appl. Phys., 126, 193105(2019).

    [279] X. X. Wang, X. Hu. Reconfigurable topological waveguide based on honeycomb lattice of dielectric cuboids. Nanophotonics, 9, 3451-3458(2020).

    [280] T. Cao, L. Fang, Y. Cao, N. Li, Z. Fan, Z. Tao. Dynamically reconfigurable topological edge state in phase change photonic crystals. Sci. Bull., 64, 814-822(2019).

    [281] Z. A. Kudyshev, A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Photonic topological phase transition on demand. Nanophotonics, 8, 1349-1356(2019).

    [282] Y. Zhang, Z. Li, S. Xu, Y. Xiang. Tunable and reconfigurable higher-order topological insulators in photonic crystals with phase change materials. Ann. Phys., 534, 2100293(2022).

    [283] H. Li, C. Ouyang, J. Ma, S. Liu, Y. Liu, Q. Xu, Y. Li, Z. Tian, J. Gu, J. Han, W. Zhang. On/off switching of valley topological edge states in the terahertz region. IEEE Photon. J., 14, 4633206(2022).

    [284] A. Blanco-Redondo. Topological nanophotonics: toward robust quantum circuits. Proc. IEEE, 108, 837-849(2020).

    [285] Q. Yan, X. Hu, Y. Fu, C. Lu, C. Fan, Q. Liu, X. Feng, Q. Sun, Q. Gong. Quantum topological photonics. Adv. Opt. Mater., 9, 2001739(2021).

    [286] V. Peano, M. Houde, F. Marquardt, A. A. Clerk. Topological quantum fluctuations and traveling wave amplifiers. Phys. Rev. X, 6, 041026(2016).

    [287] J. L. Tambasco, G. Corrielli, R. J. Chapman, A. Crespi, O. Zilberberg, R. Osellame, A. Peruzzo. Quantum interference of topological states of light. Sci. Adv., 4, eaat3187(2018).

    [288] Y. Chen, X. T. He, Y. J. Cheng, H. Y. Qiu, L. T. Feng, M. Zhang, D. X. Dai, G. C. Guo, J. W. Dong, X. F. Ren. Topologically protected valley-dependent quantum photonic circuits. Phys. Rev. Lett., 126, 230503(2021).

    [289] A. B. Redondo, B. Bell, D. Oren, B. J. Eggleton, M. Segev. Topological protection of biphoton states. Science, 362, 568-571(2018).

    [290] M. Wang, C. Doyle, B. Bell, M. J. Collins, E. Magi, B. J. Eggleton, M. Segev, A. Blanco-Redondo. Topologically protected entangled photonic states. Nanophotonics, 8, 1327-1335(2019).

    [291] Z. Jiang, C. Xi, G. He, C. Jiang. Topologically protected energy-time entangled biphoton states in photonic crystals. J. Phys. D, 55, 315104(2022).

    [292] Y. Wang, Y. H. Lu, J. Gao, Y. J. Chang, R. J. Ren, Z. Q. Jiao, Z. Y. Zhang, X. M. Jin. Topologically protected polarization quantum entanglement on a photonic chip. Chip, 1, 100003(2022).

    [293] Y. Wang, Y. H. Lu, J. Gao, K. Sun, Z. Q. Jiao, H. Tang, X. M. Jin. Quantum topological boundary states in quasi-crystals. Adv. Mater., 31, 1905624(2019).

    [294] R. J. Ren, Y. H. Lu, Z. K. Jiang, J. Gao, W. H. Zhou, Y. Wang, Z. Q. Jiao, X. W. Wang, A. S. Solntsev, X. M. Jin. Topologically protecting squeezed light on a photonic chip. Photon. Res., 10, 456-464(2022).

    [295] Y. Wang, X. L. Pang, Y. H. Lu, J. Gao, Y. J. Chang, L. F. Qiao, Z. Q. Jiao, H. Tang, X. M. Jin. Topological protection of two-photon quantum correlation on a photonic chip. Optica, 6, 955-960(2019).

    [296] F. Klauck, M. Heinrich, A. Szameit. Photonic two-particle quantum walks in Su–Schrieffer–Heeger lattices. Photon. Res., 9, A1-A7(2021).

    [297] S. Mittal, V. V. Orre, M. Hafezi. Topologically robust transport of entangled photons in a 2D photonic system. Opt. Express, 24, 15631-15641(2016).

    [298] C. Doyle, W. W. Zhang, M. Wang, B. A. Bell, S. D. Bartlett, A. B. Redondo. Biphoton entanglement of topologically distinct modes. Phys. Rev. A, 105, 023513(2022).

    [299] M. J. Mehrabad, A. P. Foster, R. Dost, E. Clarke, P. K. Patil, I. Farrer, J. Heffernan, M. S. Skolnick, L. R. Wilson. A semiconductor topological photonic ring resonator. Appl. Phys. Lett., 116, 061102(2020).

    [300] T. Yamaguchi, Y. Ota, R. Katsumi, K. Watanabe, S. Ishida, A. Osada, Y. Arakawa, S. Iwamoto. GaAs valley photonic crystal waveguide with light-emitting InAs quantum dots. Appl. Phys. Express, 12, 062005(2019).

    [301] M. J. Mehrabad, A. P. Foster, R. Dost, E. Clarke, P. K. Patil, A. M. Fox, M. S. Skolnick, L. R. Wilson. Chiral topological photonics with an embedded quantum emitter. Optica, 7, 1690-1696(2020).

    [302] X. Xie, W. Zhang, X. He, S. Wu, J. Dang, K. Peng, F. Song, L. Yang, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, X. Xu. Cavity quantum electrodynamics with second-order topological corner state. Laser Photon. Rev., 14, 1900425(2020).

    [303] S. Barik, A. Karasahin, S. Mittal, E. Waks, M. Hafezi. Chiral quantum optics using a topological resonator. Phys. Rev. B, 101, 205303(2020).

    [304] M. J. Mehrabad, A. P. Foster, N. J. Martin, R. Dost, E. Clarke, P. K. Patil, M. S. Skolnick, L. R. Wilson. A chiral topological add-drop filter for integrated quantum photonic circuits. arXiv(2021).

    [305] K. Kuruma, H. Yoshimi, Y. Ota, R. Katsumi, M. Kakuda, Y. Arakawa, S. Iwamoto. Topologically-protected single-photon sources with topological slow light photonic crystal waveguides. Laser Photon. Rev., 16, 2200077(2022).

    [306] Y. Wang, J. Ren, W. Zhang, L. He, X. Zhang. Topologically protected strong coupling and entanglement between distant quantum emitters. Phys. Rev. Appl., 14, 054007(2020).

    [307] M. Ringel, M. Pletyukhov, V. Gritsev. Topologically protected strongly correlated states of photons. New J. Phys., 16, 113030(2014).

    [308] R. Bekenstein, I. Pikovski, H. Pichler, E. Shahmoon, S. F. Yelin, M. D. Lukin. Quantum metasurfaces with atom arrays. Nat. Phys., 16, 676-681(2020).

    [309] J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, M. D. Lukin. Topological quantum optics in two-dimensional atomic arrays. Phys. Rev. Lett., 119, 023603(2017).

    [310] J. Perczel, J. Borregaard, D. E. Chang, S. F. Yelin, M. D. Lukin. Topological quantum optics using atomlike emitter arrays coupled to photonic crystals. Phys. Rev. Lett., 124, 083603(2020).

    [311] C. R. Mann, T. J. Sturges, G. Weick, W. L. Barnes, E. Mariani. Manipulating type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces. Nat. Commun., 9, 2194(2018).

    [312] M. Orenstein, S. Fan. Photonic Chern insulators from two-dimensional atomic lattices interacting with a single surface plasmon polariton. Phys. Rev. B, 103, 125423(2021).

    [313] D. D. Bernardis, Z. P. Cian, I. Carusotto, M. Hafezi, P. Rabl. Light-matter interactions in synthetic magnetic fields: Landau-photon polaritons. Phys. Rev. Lett., 126, 103603(2021).

    [314] E. P. N. Baron, H. V. Posada, A. G. Tudela. Photon-mediated interactions near a dirac photonic crystal slab. ACS Photon., 8, 3209-3217(2011).

    [315] C. R. Mann, S. A. R. Horsley, E. Mariani. Tunable pseudo-magnetic fields for polaritons in strained metasurfaces. Nat. Photonics, 14, 669-674(2020).

    [316] C. R. Mann, E. Mariani. Topological transitions in arrays of dipoles coupled to a cavity waveguide. Phys. Rev. Res., 4, 013078(2022).

    [317] J. Ningyuan, C. Owens, A. Sommer, D. Schuster, J. Simon. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X, 5, 021031(2015).

    [318] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, R. Thomale. Topolectrical-circuit realization of topological corner modes. Nat. Phys., 14, 925-929(2018).

    [319] S. Liu, W. Gao, Q. Zhang, S. Ma, L. Zhang, C. Liu, Y. J. Xiang, T. J. Cui, S. Zhang. Topologically protected edge state in two-dimensional Su–Schrieffer–Heeger circuit. Research, 2019, 8609875(2019).

    [320] S. Liu, S. Ma, C. Yang, L. Zhang, W. Gao, Y. J. Xiang, T. J. Cui, S. Zhang. Gain-and loss-induced topological insulating phase in a non-Hermitian electrical circuit. Phys. Rev. Appl., 13, 014047(2020).

    [321] J. Dong, V. Juričić, B. Roy. Topolectric circuits: theory and construction. Phys. Rev. Res., 3, 023056(2021).

    [322] S. Liu, S. Zhang, T. J. Cui. Topological circuit: a playground for exotic topological physics. Chin. Opt., 14, 736-753(2021).

    Jian Wei You, Zhihao Lan, Qian Ma, Zhen Gao, Yihao Yang, Fei Gao, Meng Xiao, Tie Jun Cui. Topological metasurface: from passive toward active and beyond[J]. Photonics Research, 2023, 11(3): B65
    Download Citation