• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011025 (2021)
Hongxu Huang, Lijing Li, and Mingjie Sun*
Author Affiliations
  • School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China
  • show less
    DOI: 10.3788/LOP202158.1011025 Cite this Article Set citation alerts
    Hongxu Huang, Lijing Li, Mingjie Sun. Computational Ghost Imaging Based on Chromatic LED Array with Special RGB Arrangement[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011025 Copy Citation Text show less
    References

    [1] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [2] Wu Z W, Qiu X D, Chen L X et al. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 57, 060001(2020).

    [3] Radwell N, Mitchell K J, Gibson G M et al. Single-pixel infrared and visible microscope[J]. Optica, 1, 285-289(2014). http://www.opticsinfobase.org/abstract.cfm?uri=optica-1-5-285

    [4] Watts C M, Shrekenhamer D, Montoya J et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 8, 605-609(2014). http://www.nature.com/articles/nphoton.2014.139

    [5] Zhang A X, He Y H, Wu LG et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018). http://arxiv.org/abs/1709.01016

    [6] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013). http://www.ncbi.nlm.nih.gov/pubmed/23687044

    [7] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016). http://www.ncbi.nlm.nih.gov/pubmed/27377197

    [8] Sun M J, Zhang J M. Single-pixel imaging and its application in three-dimensional reconstruction: a brief review[J]. Sensors, 19, 732(2019).

    [9] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008). http://ieeexplore.ieee.org/document/4472247/references?signout=success

    [10] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [11] Candès E, Romberg J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems, 23, 969-985(2007). http://arxiv.org/abs/math/0611957v1

    [12] Baraniuk R G. Compressive sensing [lecture notes][J]. IEEE Signal Processing Magazine, 24, 118-121(2007).

    [13] Feng W, Zhao X D, Tang S J et al. Compressive computational ghost imaging method based on region segmentation[J]. Laser & Optoelectronics Progress, 57, 101105(2020).

    [14] Wang Y Y, Ren Y C, Chen L Y et al. Terahertz wave wide-beam imaging technology based on block compressive sensing theory[J]. Acta Optica Sinica, 39, 0407001(2019).

    [15] Ryczkowski P, Barbier M, Friberg A T et al. Ghost imaging in the time domain[J]. Nature Photonics, 10, 167-170(2016). http://www.nature.com/articles/nphoton.2015.274

    [16] Faccio D. Temporal ghost imaging[J]. Nature Photonics, 10, 150-152(2016).

    [17] Devaux F, Moreau P A, Denis S et al. Computational temporal ghost imaging[J]. Optica, 3, 698-701(2016).

    [18] Jiang W J, Li X Y, Jiang S et al. Increase the frame rate of a camera via temporal ghost imaging[J]. Optics and Lasers in Engineering, 122, 164-169(2019). http://www.sciencedirect.com/science/article/pii/S014381661930065X

    [19] Sun M J, Chen W, Liu T F et al. Image retrieval in spatial and temporal domains with a quadrant detector[J]. IEEE Photonics Journal, 9, 1-6(2017). http://ieeexplore.ieee.org/document/8013684/

    [20] Sun M J, Wang H Y, Huang J Y et al. Improving the performance of computational ghost imaging by using a quadrant detector and digital micro-scanning[J]. Scientific Reports, 9, 4105(2019). http://www.nature.com/articles/s41598-019-40798-x

    [21] Howland G A, Lum D J, Ware M R et al. Photon counting compressive depth mapping[J]. Optics Express, 21, 23822-23837(2013). http://europepmc.org/abstract/MED/24104293

    [22] Sun M J, Edgar M P, Phillips D B et al. Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning[J]. Optics Express, 24, 10476-10485(2016).

    [23] Lochocki B, Gambín A, Manzanera S et al. Single pixel camera ophthalmoscope[J]. Optica, 3, 1056-1059(2016).

    [24] Xu Z H, Chen W, Penuelas J et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 26, 2427-2434(2018). http://www.ncbi.nlm.nih.gov/pubmed/29401782

    [25] French A S, Snyder A W, Stavenga D G et al. Image degradation by an irregular retinal mosaic[J]. Biological Cybernetics, 27, 229-233(1977). http://europepmc.org/abstract/MED/588625

    [26] Sun M J, Meng L T, Edgar M P et al. A Russian Dolls ordering of the Hadamard basis for compressive single-pixel imaging[J]. Scientific Reports, 7, 3464(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5471277/

    [27] Pratt W K, Kane J, Andrews H C et al. Hadamard transform image coding[J]. Proceedings of the IEEE, 57, 58-68(1969).

    [28] Zhang Z, Ma X, Zhong J et al. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2015).

    [29] Zhang Z B, Wang X Y, Zheng G A et al. Hadamard single-pixel imaging versus Fourier single-pixel imaging[J]. Optics Express, 25, 19619-19639(2017). http://www.ncbi.nlm.nih.gov/pubmed/29041155

    Hongxu Huang, Lijing Li, Mingjie Sun. Computational Ghost Imaging Based on Chromatic LED Array with Special RGB Arrangement[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011025
    Download Citation