• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 5, 580 (2020)
[in Chinese]1、2、*, [in Chinese]1、2, [in Chinese]1、2, [in Chinese]1, [in Chinese]1、2, [in Chinese]1、2, [in Chinese]1、2, [in Chinese]2, [in Chinese], and [in Chinese]
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2020.05.007 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Basic principle and technical progress of Doppler wind lidar[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580 Copy Citation Text show less
    References

    [1] Fujii T D, Fukuchi T. Laser Remote Sensing [M]. Taylor & Francis, 2005: 338-342.

    [4] Huffaker R M, Hardesty R M. Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems [J]. Proceedings of the IEEE, 1996, 84(2): 181-204.

    [5] Huffaker R M. Laser Doppler detection systems for gas velocity measurement [J]. Applied Optics, 1970, 9(5): 1026.

    [6] Huffaker R M, Jelalian A V, Thomson J A L. Laser-Doppler system for detection of aircraft trailing vortices [J]. Proceedings of the IEEE, 1970, 58(3): 322-326.

    [7] Brashears M R, Hallock J N. The measurement of wind shear and wake vortices by laser Doppler velocimetry [C]. th Conference on Aerospace and Aeronautical Meteorology, 1977.

    [8] Schwiesow R L, Cupp R E, Sinclair P C, et al. Waterspout velocity measurements by airborne Doppler lidar [J]. Journal of Applied Meteorology, 2010, 20(4): 341-348.

    [9] Intrieri J M, Brewer W A, Eberhard W L. Performance of the Mini-MOPA, CO2 Doppler, cloud lidar at CART [C]. ARM Science Team Meeting, 1997: 347-349.

    [10] Pearson B G, Collier C G. A pulsed coherent CO2 lidar for boundary-layer meteorology [J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(559): 2703-2721.

    [11] Kane T J, Kozlovsky W J, Byer R L. Coherent laser radar at 1.06 μm using Nd: YAG lasers [J]. Optics Letters, 1987, 12(4): 239-241.

    [12] Kavaya M J, Henderson S W, Magee J R, et al. Remote wind profiling with a solid-state Nd: YAG coherent lidar system [J]. Optics Letters, 1989, 14(15): 776-778.

    [13] Hawley J G, Targ R, Henderson S W, et al. Coherent launch-site atmospheric wind sounder: Theory and experiment [J]. Applied Optics, 1993, 32(24): 4557-4568.

    [14] Hawley J G, Targ R, Bruner R S, et al. Performance of a 1μm, 1 joule coherent launch site atmospheric wind sounder [C]. Proceedings of SPIE, 1992, 1694: 110-120.

    [15] Henderson S W, Hale C P, Magee J R, et al. Eye-safe coherent laser radar system at 2.1 μm using Tm, Ho:YAG lasers [J]. Optics Letters, 1991, 16(10): 773-775.

    [16] Wulfmeyer V, Randall M, Brewer A, et al. 2 μm Doppler lidar transmitter with high frequency stability and low chirp [J]. Optics Letters, 2000, 25(17): 1228-1230.

    [17] Grund C J, Banta R M, George J L, et al. High-resolution Doppler lidar for boundary layer and cloud research [J]. Journal of Atmospheric Oceanic Technology, 2001, 18(3): 376-393.

    [18] Phillips M W, Henderson S W, Poling M, et al. Coherent LIDAR development for Doppler wind measurement from the International Space Sation [C]. Proceedings of SPIE, 2001, 4153: 376-384.

    [19] Kameyama S, Yanagisawa T, Ando T, et al. Development of wind sensing coherent Doppler LIDAR at Mitsubishi Electric Corporation from late 1990s to 2013 [C]. Proceedings of the 17th Coherent Laser Radar Conference, Barcelona, Spain, 2013: 12-13.

    [20] Engelmann R, Wandinger U, Ansmann A, et al. Lidar observations of the vertical aerosol flux in the planetary boundary layer [J]. Journal of Atmospheric Oceanic Technology, 2008, 25(8): 1296-1306.

    [21] Bluestein H B, French M M, Houser J B, et al. A summary of data collected during VORTEX-2 by MWR-05XP/TWOLF, UMass X-Pol, and the UMass W-band radar [C]. th Conference on Severe Local Storms, Denver, Colorado, 2010.

    [22] Hannon S, Barr K, Novotny J, et al. Large scale wind resource mapping using a state-of-the-art 3D scanning lidar [C]. Wind Power 2008, Houston, Texas, USA, 2008.

    [23] Hannon S M, Vetorino S R, Pelk J V. Next generation Doppler lidar sensor at 1.6 μm [C]. Proceedings of the 14th Coherent Laser Radar Conference, Snowmass, Colorado, USA, 2007: 59-62.

    [24] Kameyama S, Sakimura T, Watanabe Y, et al. Wind sensing demonstration of more than 30 km measurable range with a 1.5 μm coherent Doppler lidar which has the laser amplifier using Er, Yb: glass planar waveguide [C]. Proceedings of SPIE, 2012, 8526: 85260E.

    [27] Liu J Q, Zhu X P, Zhou J, et al. Development of a coherent Doppler lidar to measure atmosphere windshear [C]. Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM), IEEE, 2011: 843-845.

    [28] Liu J Q, Zhu X L, Zhu X P, et al. Development of all-fiber coherent Doppler lidar to measure atmosphere wind speed [C]. th International Laser Radar Conference, Porto Heli, Peloponnesus, Greece, 2012: 199-202.

    [29] Diao W F, Zhang X, Liu J Q, et al. All fiber pulsed coherent lidar development for wind profiles measurements in boundary layers [J]. Chinese Optics Letters, 2014, 12(7): 072801.

    [30] Liu J Q, Zhu X P, Diao W F, et al. All-fiber airborne coherent Doppler lidar to measure wind profiles [C]. th International Laser Radar Conference, New York City, New York, USA, 2015.

    [31] Wu S H, Yin J P, Liu B Y, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar [C]. Proceedings of SPIE, 2014, 9262: 92620H.

    [32] http://www.darsunlaser.com/a/news/91.html.

    [35] Liu B, Peng Z X. Design of a non-scanning lidar for wind velocity and wind velocity and direction measurement [C]. th International Laser Radar Conference, New York City, New York, USA, 2015.

    [36] Foot C J. Atomic Physics (Oxford Master Series in Atomic, Optical and Laser Physics) [M]. Oxford University Press, 2013.

    [37] Brown A, Thomas E L, Foord R, et al. Measurements on a distant smoke plume with a CO2 laser velocimeter [J]. Journal of Physics D: Applied Physics, 1978, 11(2): 137.

    [38] Reitebuch O. Atmospheric Physics [M]. Berlin Heidelberg: Springer, 2012: 487-507.

    [41] Liu Z S, Wu D, Liu J T, et al. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter [J]. Applied Optics, 2002, 41(33): 7079-7086.

    [45] Peng Z, Wang B, Tan M, et al. Design and simulation of 532 nm Rayleigh-Mie Doppler wind lidar system [C]. Seminar on Novel Optoelectronic Detection Technology and Application, 2018: 293.

    [46] Spuler S M, Richter D, Spowart M P, et al. Optical fiber-based laser remote sensor for airborne measurement of wind velocity and turbulence [J]. Applied Optics, 2011, 50(6): 842-851.

    [47] Straume-Lindner A G, Elfving A, Wernham D, et al. ESA’s spaceborne lidar mission ADM-Aeolus; Recent achievements and preparations for launch [J]. EPJ Web of Conferences, 2016, 119: 01001.

    [48] Reitebuch O, Lemmerz C, Nagel E, et al. The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-aeolus. Part I: Instrument design and comparison to satellite instrument [J]. Journal of Atmospheric & Oceanic Technology, 2009, 26(12): 2501-2515.

    [49] Anders E. Aeolus laser shines light on wind [OL]. ESA, 2018, URL: http://m.esa.int/Our-Activities/Observing-the-Earth/Aeolus/Aeolus-laser- shines-light-on-wind.

    [50] Xia H, Shangguan M, Wang C, et al. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer [J]. Optics Letters, 2016, 41(22): 5218.

    [51] Shangguan M, Xia H, Wang C, et al. Dual-frequency Doppler lidar for wind detection with a superconducting nanowire single-photon detector [J]. Optics Letters, 2017, 42(18): 3541.

    CLP Journals

    [1] CHEN Yujun, YAO Bo, LIU Haowei, WEI Shanshan, MAO Qinghe. Development of single-longitudinal-mode DBR fiber laser based on thulium-doped silica glass fiber[J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 56

    [2] ZHONG Yulong, CHENG Tingqing. Experimental study of LD side-pumped Tm:YAG electro-optically Q-switched laser[J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 736

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Basic principle and technical progress of Doppler wind lidar[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580
    Download Citation