• Journal of Innovative Optical Health Sciences
  • Vol. 13, Issue 3, 2030009 (2020)
Dan Chen, Meiru Song, Jinling Huang*, Naishen Chen, Jinping Xue, and Mingdong Huang
Author Affiliations
  • College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P. R. China
  • show less
    DOI: 10.1142/s1793545820300098 Cite this Article
    Dan Chen, Meiru Song, Jinling Huang, Naishen Chen, Jinping Xue, Mingdong Huang. Photocyanine: A novel and effective phthalocyanine-based photosensitizer for cancer treatment[J]. Journal of Innovative Optical Health Sciences, 2020, 13(3): 2030009 Copy Citation Text show less
    References

    [1] P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, "Photodynamic therapy of cancer: an update," CA Cancer J. Clin. 61(4), 250–281 (2011).

    [2] W. N. Hait, "Anticancer drug development: The grand challenges," Nat. Rev. Drug Discov. 9(4), 253–254 (2010).

    [3] C. Hopper, "Photodynamic therapy: A clinical reality in the treatment of cancer," Lancet Oncol. 1, 212–219 (2000).

    [4] Z. Huang, "A review of progress in clinical photodynamic therapy," Technol. Cancer Res. Treat. 4(3), 283–293 (2005).

    [5] N. Nishiyama, Y. Morimoto, W. D. Jang, K. Kataoka, "Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy," Adv. Drug Deliv. Rev. 61(4), 327–338 (2009).

    [6] M. Ethirajan, Y. H. Chen, P. Joshi, R. K. Pandey, "The role of porphyrin chemistry in tumor imaging and photodynamic therapy," Chem. Soc. Rev. 40(1), 340–362 (2011).

    [7] T. S. Mang, "Lasers and light sources for PDT: Past, present and future," Photodiagn. Photodyn. Ther. 1(1), 43–48 (2004).

    [8] L. Brancaleon, H. Moseley, "Laser and non-laser light sources for photodynamic therapy," Lasers Med. Sci. 17(3), 173–186 (2002).

    [9] Z. Jiang, J. W. Shao, T. T. Yang, J. Wang, L. Jia, "Pharmaceutical development, composition and quantitative analysis of phthalocyanine as the photo sensitizer for cancer photodynamic therapy," J. Pharm. Biomed. Anal. 87, 98–104 (2014).

    [10] M. Lismont, L. Dreesen, S. Wuttke, "Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives," Adv. Funct. Mater. 27(14), 1606314 (2017).

    [11] W. M. Sharman, C. M. Allen, J. E. van Lier, "Photodynamic therapeutics: Basic principles and clinical applications," Drug Disc. Today 4(11), 507–517 (1999).

    [12] R. Bonnett, "Photosensitizers of the Porphyrin and Phthalocyanine Series for Photodynamic Therapy," Chem. Soc. Rev. 24(1), 19–33 (1995).

    [13] M. O. Senge, J. C. Brandt, "Temoporfin (Foscan (R), 5,10,15,20-Tetra(m-hydroxyphenyl)chlorin)-A Second-generation Photosensitizer," Photochem. Photobiol. 87(6), 1240–1296 (2011).

    [14] A. E. O'Connor, W. M. Gallagher, A. T. Byrne, "Porphyrin and Nonporphyrin Photosensitizers in Oncology: Preclinical and clinical advances in photodynamic therapy," Photochem. Photobiol. 85(5), 1053–1074 (2009).

    [15] S. B. Brown, E. A. Brown, I. Walker, "The present and future role of photodynamic therapy in cancer treatment," Lancet Oncol. 5(8), 497–508 (2004).

    [16] C. C. Leznoff, A. B. P. Lever, Phthalocyanines: Properties and Applications, Vol. 1, VCH (1989).

    [17] B. W. Henderson, T. J. Dougherty, "How does photodynamic therapy work?" Photochem. Photobiol. 55(1), 145–157 (1992).

    [18] J. L. Huang, J. D. Huang, E. S. Liu, N. S. Chen, "Some relationships between structures and photodynamic anti-cancer activities of phthalocyanines," Acta Phys. Chim. Sin. 17(7), 662–671 (2001).

    [19] A. R. Morgan, "Strategies for the development of photodynamic sensitizers," Curr. Med. Chem. 2(2), 604–615 (1995).

    [20] P. Margaron, R. Langlois, J. E. Vanlier, S. Gaspard, "Photodynamic properties of naphthosulfobenzoporphyrazines, novel asymmetric, amphiphilic phthalocyanine derivatives," J. Photochem. Photobiol. B-Biol. 14(3), 187–199 (1992).

    [21] B. Paquette, R. W. Boyle, H. Ali, A. H. MacLennan, T. G. Truscott, J. E. van Lier, "Sulfonated phthalimidomethyl aluminum phthalocyanine: The effect of hydrophobic substituents on the in vitro phototoxicity of phthalocyanines," Photochem. Photobiol. 53(3), 323–327 (1991).

    [22] J. L. Huang, N. S. Chen, J. D. Huang et al., "Metal phthalocyanine as photosensitizer for photodynamic therapy (PDT)-Preparation, characterization and anticancer activities of an amphiphilic phthalocyanine ZnPcS2P2," Sci. China Ser. B, Chem. 43(6), 481–488 (2000).

    [23] B. Cabezon, S. Rodriguezmorgade, T. Torres, "Stepwise synthesis of soluble substituted triazolephthalocyanines," J. Org. Chem. 60(6), 1872–1874 (1995).

    [24] J. Yang, T. C. Rogers, M. R. Vandemark, "Synthesis of 1,2,3,4-Tetraphenyl-9,10,16,17,23,24,-Hexadodecyloxyphthalocyanine," J. Heterocyc. Chem. 30(2), 571–573 (1993).

    [25] J. G. Young, W. Onyebuagu, "Synthesis and characterization of di-disubstituted phthalocyanines," J. Org. Chem. 55(7), 2155–2159 (1990).

    [26] S. Kudrevich, N. Brasseur, C. LaMadeleine, S. Gilbert, J. E. vanLier, "Syntheses and photodynamic activities of novel trisulfonated zinc phthalocyanine derivatives," J. Med. Chem. 40(24), 3897–3904 (1997).

    [27] K. J. M. Nolan, M. Hu, C. C. Leznoff, "Adjacent substituted phthalocyanines," Synlett 1977(5), 593–594 (1977).

    [28] H. Ali, R. Langlois, J. R. Wagner, N. Brasseur, B. Paquette, J. E. van Lier, "Biological activities of phthalocyanines– X. Syntheses and analyses of sulfonated phthalocyanines," Photochem. Photobiol. 47(5), 713–177 (1988).

    [29] J. Wang, H. Liu, J. P. Xue, Z. Jiang, N. S. Chen, J. L. Huang, "The constitutes and isomer distribution of di-(potassium sulfonate)-di-phthatimidomethyl phthalocyanine zinc," Chin. Sci. Bull. 53(11), 1657–1664 (2008).

    [30] X. S. Li, N. Kwon, T. Guo, Z. Liu, J. Yoon, "Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy," Angew. Chem. Int. Ed. 57(36), 11522–11531 (2018).

    [31] H. Y. Ding, H. J. Yu, Y. Dong, R. H. Tian, G. Huang, D. A. Boothman, B. D. Sumer, J. M. Gao, "Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia," J. Controlled Release 156(3), 276–280 (2011).

    [32] Z. Lv, H. J. Wei, Q. Li, X. L. Su, S. J. Liu, K. Y. Zhang, W. Lv, Q. Zhao, X. H. Li, W. Huang, "Achieving e±cient photodynamic therapy under both normoxia and hypoxia using cyclometalated Ru(II) photosensitizer through type I photochemical process," Chem. Sci. 9(2), 502–512 (2018).

    [33] J. S. Dysart, M. S. Patterson, "Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro," Phys. Med. Biol. 50(11), 2597–2616 (2005).

    [34] J. Moan, K. Berg, E. Kvam, A. Western, Z. Malik, A. Ruck, H. Schneckenburger, "Intracellular localization of photosensitizers," Ciba Found. Symp. 146, 95–107 (1989).

    [35] J. W. Shao, J. P. Xue, Y. C. Dai, H. Liu, N. S. Chen, L. Jia, J. L. Huang, "Inhibition of human hepatocellular carcinoma HepG2 by phthalocyanine photosensitiser Photocyanine: ROS production, apoptosis, cell cycle arrest," Eur. J. Cancer 48(13), 2086–2096 (2012).

    [36] J. W. Shao, Y. C. Dai, W. N. Zhao, J. J. Xie, J. P. Xue, J. H. Ye, L. Jia, "Intracellular distribution and mechanisms of actions of photosensitizer Zinc(II)-phthalocyanine solubilized in Cremophor EL against human hepatocellular carcinoma HepG2 cells," Cancer Lett. 330(1), 49–56 (2013).

    [37] A. P. Castano, T. N. Demidova, M. R. Hamblin, Mechanisms in photodynamic therapy: "Part three-Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction," Photodiagn. Photodyn. Ther. 2(2), 91–106 (2005).

    [38] D. E. Dolmans, D. Fukumura, R. K. Jain, "Photodynamic therapy for cancer," Nat. Rev. Cancer 3(5), 380–387 (2003).

    [39] B. W. Pogue, J. A. O'Hara, E. Demidenko, C. M. Wilmot, I. A. Goodwin, B. Chen, H. M. Swartz, T. Hasan, "Photodynamic therapy with verteporfin in the radiation-induced fibrosarcoma-1 tumor causes enhanced radiation sensitivity," Cancer Res. 63(5), 1025–1033 (2003).

    [40] W. Liu, N. Chen, H. Jin, J. Huang, J. Wei, J. Bao, C. Li, Y. Liu, X. Li, A. Wang, "Intravenous repeated-dose toxicity study of ZnPcS2P2-basedphotodynamic therapy in beagle dogs," Regul. Toxicol. Pharmacol. 47(3), 221–231 (2007).

    Dan Chen, Meiru Song, Jinling Huang, Naishen Chen, Jinping Xue, Mingdong Huang. Photocyanine: A novel and effective phthalocyanine-based photosensitizer for cancer treatment[J]. Journal of Innovative Optical Health Sciences, 2020, 13(3): 2030009
    Download Citation