• Photonics Research
  • Vol. 7, Issue 8, 862 (2019)
Mario A. Quiroz-Juárez1, Armando Perez-Leija2,3, Konrad Tschernig2,3, Blas M. Rodríguez-Lara4,5..., Omar S. Magaña-Loaiza6, Kurt Busch2,3, Yogesh N. Joglekar7,8,* and Roberto de J. León-Montiel1,9,*|Show fewer author(s)
Author Affiliations
  • 1Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 Cd. Mx., Mexico
  • 2Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
  • 3Humboldt-Universität zu Berlin, Institut für Physik, AG Theoretische Optik & Photonik, D-12489 Berlin, Germany
  • 4Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849 Monterrey, N.L., Mexico
  • 5Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue. CP 72840, Mexico
  • 6Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
  • 7Department of Physics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, USA
  • 8e-mail: yojoglek@iupui.edu
  • 9e-mail: roberto.leon@nucleares.unam.mx
  • show less
    DOI: 10.1364/PRJ.7.000862 Cite this Article Set citation alerts
    Mario A. Quiroz-Juárez, Armando Perez-Leija, Konrad Tschernig, Blas M. Rodríguez-Lara, Omar S. Magaña-Loaiza, Kurt Busch, Yogesh N. Joglekar, Roberto de J. León-Montiel, "Exceptional points of any order in a single, lossy waveguide beam splitter by photon-number-resolved detection," Photonics Res. 7, 862 (2019) Copy Citation Text show less

    Abstract

    Exceptional points (EPs) are degeneracies of non-Hermitian operators where, in addition to the eigenvalues, the corresponding eigenmodes become degenerate. Classical and quantum photonic systems with EPs have attracted tremendous attention due to their unusual properties, topological features, and an enhanced sensitivity that depends on the order of the EP, i.e., the number of degenerate eigenmodes. Yet, experimentally engineering higher-order EPs in classical or quantum domains remain an open challenge due to the stringent symmetry constraints that are required for the coalescence of multiple eigenmodes. Here, we analytically show that the number-resolved dynamics of a single, lossy waveguide beam splitter, excited by N indistinguishable photons and post-selected to the N-photon subspace, will exhibit an EP of order N+1. By using the well-established mapping between a beam splitter Hamiltonian and the perfect state transfer model in the photon-number space, we analytically obtain the time evolution of a general N-photon state and numerically simulate the system’s evolution in the post-selected manifold. Our results pave the way toward realizing robust, arbitrary-order EPs on demand in a single device.
    H^=ω0(a^a^+b^b^)+κ(a^b^+a^b^)iΓb^b^,(1)

    View in Article

    H^N=(ω0iΓ/2)N^+2κJ^xiΓJ^z,(2)

    View in Article

    J^z=(b^b^a^a^)/2,(3)

    View in Article

    J^x=(a^b^+a^b^)/2,(4)

    View in Article

    λr=(ω0iΓ/2)N+r4κ2Γ2,(5)

    View in Article

    I(z)=ψ(0)|G(z)G(z)|ψ(0),(6)

    View in Article

    G(z)=ei(ω0iΓ/2)N^zeif+(z)J^+eifz(z)J^zeif(z)J^,(7)

    View in Article

    zf+(z)=κ[1+f+2(z)]Γf+(z),zfz(z)=iΓ+2iκf+(z),zf(z)=κexp[ifz(z)].(8)

    View in Article

    f±(z)=Γ2κ+Δλ2κ[tan(zΔλ/2)Γ/Δλ1+(Γ/Δλ)tan(zΔλ/2)],(9)

    View in Article

    fz(z)=2iln[cos(zΔλ2)+ΓΔλsin(zΔλ2)].(10)

    View in Article

    P(|m);z)=|(m|ϕ(z)|2ϕ(z)|ϕ(z),(11)

    View in Article

    Mario A. Quiroz-Juárez, Armando Perez-Leija, Konrad Tschernig, Blas M. Rodríguez-Lara, Omar S. Magaña-Loaiza, Kurt Busch, Yogesh N. Joglekar, Roberto de J. León-Montiel, "Exceptional points of any order in a single, lossy waveguide beam splitter by photon-number-resolved detection," Photonics Res. 7, 862 (2019)
    Download Citation