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Exceptional points (EPs) are degeneracies of non-Hermitian operators where, in addition to the eigenvalues, the
corresponding eigenmodes become degenerate. Classical and quantum photonic systems with EPs have attracted
tremendous attention due to their unusual properties, topological features, and an enhanced sensitivity that
depends on the order of the EP, i.e., the number of degenerate eigenmodes. Yet, experimentally engineering
higher-order EPs in classical or quantum domains remain an open challenge due to the stringent symmetry
constraints that are required for the coalescence of multiple eigenmodes. Here, we analytically show that the
number-resolved dynamics of a single, lossy waveguide beam splitter, excited by N indistinguishable photons
and post-selected to the N -photon subspace, will exhibit an EP of order N � 1. By using the well-established
mapping between a beam splitter Hamiltonian and the perfect state transfer model in the photon-number space,
we analytically obtain the time evolution of a general N -photon state and numerically simulate the system’s
evolution in the post-selected manifold. Our results pave the way toward realizing robust, arbitrary-order
EPs on demand in a single device. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.000862

1. INTRODUCTION

A fundamental postulate of quantum theory is that the
Hamiltonian of a (closed) system is Hermitian, which guaran-
tees real energy eigenvalues and a unitary time evolution [1].
This conventional wisdom was upended when Bender and
coworkers discovered families of non-Hermitian Hamiltonians
with real spectra [2]. The common feature of all such
Hamiltonians was that they were invariant under the combined
operations of space- and time-reflection, i.e., they were parity
and time-reversal (PT ) symmetric Hamiltonians. Over the
past two decades, it has become clear that non-Hermitian,
PT -symmetric Hamiltonians represent classical systems with
spatially or temporally separated gain and loss [3–5]. The spec-
trum of a PT symmetric Hamiltonian changes from purely
real to complex conjugate pairs when the strength of its
anti-Hermitian part matches the Hermitian energy scale.

This PT -symmetry breaking transition occurs at an excep-
tional point [6–8]. The phenomenology of PT -symmetric
Hamiltonians with second- and third-order EPs has been
extensively explored in optical, mechanical, electrical, and
acoustic experimental realizations [5]. Exceptional point degen-
eracies also occur in mode-selective lossy Hamiltonians, which
has enabled investigations of EP-related phenomena in dissipa-
tive systems in the classical [9,10] and quantum [11,12]
domains, including the realization of a fourth-order EP with
single photons [13].

Many remarkable properties of non-Hermitian systems,
such as asymmetric mode switching [14], topological energy
transfer [15], robust wireless power transfer [16], and enhanced
classical sensitivity [17–20] are due to their EP degeneracies.
In sharp contrast with Hermitian Hamiltonians, whose eigen-
modes continue to span the space irrespective of eigenvalue
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degeneracies, in the non-Hermitian case, the eigenmodes of the
Hamiltonian at an EP do not span the space, and the deficit
grows proportional to the order of the EP. This key difference is
instrumental to the system sensitivity that scales with the order
of the EP [19,20] and has led to the tremendous interest in
developing systems with higher-order EPs [21–23] and under-
standing their fundamental quantum limits [24]. However,
experimentally realizing classical or quantum systems with
higher-order EPs has proven extremely challenging, and EPs
beyond the fourth order have not been realized. In particular,
integrated platforms where EPs of different orders can be real-
ized are absent.

In this paper, we propose and theoretically investigate such a
platform in a single, lossy waveguide beam splitter in the quan-
tum domain. When excited by a state with N indistinguishable
photons and confined to the N -photon subspace, we show that
the dynamics of such a beam splitter has an EP of order N � 1,
which is observable with currently available number-resolving
single-photon detectors [25–27]. In contrast with the past pro-
posals with multiple waveguides or resonators, where precise
parameter tuning is needed to ensure that the higher-order
EP does not split into lower-order ones, we show that these
EPs are robust due to the bosonic nature of photons and linear
nature of the loss at low intensities.

The paper is structured as follows. In Section 2, we present
the formal treatment of the model in the photon-number basis
and show analytical results for the time evolution of an arbitrary
state. Results from numerical simulations based on the so-called
NOON states are presented in Section 3. The paper is con-
cluded in Section 4 with a brief discussion.

2. LOSSY BEAM SPLITTER IN THE PHOTON-
NUMBER BASIS

The general beam splitter Hamiltonian in second-quantized
notation is given by [28]

Ĥ � ω0�â†â� b̂†b̂� � κ�âb̂† � â†b̂� − iΓb̂†b̂, (1)

where â† (â) and b̂† (b̂) represent bosonic creation (anni-
hilation) operators for photonic modes in the two wave-
guides, ω0 is their common propagation constant, the coupling
between the two waveguides is given by κ, and Γ is the dissi-
pation coefficient of the lossy waveguide.

To unveil the link between the waveguide beam splitter
and arbitrary-order exceptional points, we represent the
Hamiltonian Eq. (1) in the two-mode, N -photon subspace.
This subspace is spanned by N � 1 orthonormal states jm� ≔
jN − m,mi � jN − miajmib (0 ≤ m ≤ N ) corresponding
�N − m� photons in the neutral waveguide and m photons
in the lossy waveguide. We emphasize that photon-number-
resolving detection is necessary to access different basis states
in this subspace [Fig. 1(a)]. It follows from the properties of
creation and annihilation operators that the loss-term gives
rise to linearly varying potential, i.e., �mjb̂†b̂jm 0� � mδmm 0

[Fig. 1(b)], while the tunneling term gives rise to index-
dependent, nearest-neighbor tunneling amplitude, i.e., �mjâ†b̂�
b̂†âjm 0� � �δm,m 0�1 � δm,m 0−1�2κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�N � 1 − m�

p
[29]. In

this basis, Eq. (1) becomes [29,30]

ĤN � �ω0 − iΓ∕2�N̂ � 2κĴ x − iΓĴ z , (2)

Fig. 1. (a) Schematic of a single, lossy waveguide beam splitter excited with N indistinguishable photons prepared in the state
jm� ≔ jN − m,mi � jN − miajmib, where a represents the neutral (gray) waveguide and b is the lossy (red) waveguide. (b) Mapping onto
the N -photon subspace spanned by �N � 1� multiphoton states jm�, represented as a tight-binding lattice model. The coupling between adjacent
“modes” is given by matrix elements of Ĵ x ; the linearly increasing loss is also shown. (c) Flow of eigenvalues of ĤN for N � 4. R�λr� shows level
attraction with an EP of order five at Γ � 2κ; I�λr� shows the emergence of slow modes past the transition. (d) Intensity I�z� shows the fraction of
trials where the system remains in theN -photon subspace, i.e., the post-selection probability. It reflects the order of the exceptional point. The beam
splitter parameters are ω0 � κ � 1 cm−1, and the initial state is jψ�0�i � j0�.
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where N̂ � â†â� b̂†b̂ is the total photon-number operator.
The Hermitian generators

Ĵ z � �b̂†b̂ − â†â�∕2, (3)

Ĵ x � �â†b̂� âb̂†�∕2, (4)

satisfy the angular momentum algebra �Ĵ z , Ĵ x � � iĴ y, with

Ĵ y � i�â†b̂ − âb̂†�∕2, and its cyclic permutations. Thus, in
the N -photon subspace, Ĵ x and Ĵ z are spin S � N∕2 represen-
tations of the angular momentum operators. In the absence of
loss, Γ � 0, Eq. (2) reduces to the perfect-state transfer
model [31–36].

Within the �N � 1�-dimensional subspace, the equidistant
eigenvalues of the Hamiltonian are analytically given by the
expression

λr � �ω0 − iΓ∕2�N � r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ2 − Γ2

p
, (5)

where r � f−S, − S � 1,…, Sg. It follows from Eq. (5) that
the adjacent difference Δλ ≡ λr − λr−1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4κ2 − Γ2

p
is purely

real when the dissipation coefficient Γ ≤ 2κ and becomes
purely imaginary when the dissipation coefficient is larger,
i.e., Γ > 2κ. At the transition point Γc � 2κ, all eigenvalues
become degenerate, and all the eigenmodes coalesce, thus
giving rise to an exceptional point of order N � 1 [30].
Figure 1(c) shows the (analytical) flow of eigenvalues for a lossy
beam splitter excited by N � 4 photons, a realistic number
that has been achieved in recent experiments [25–27]. The
beam splitter parameters are set to ω0 � κ � 1 cm−1. The
top panel in Fig. 1(c) shows that, as Γ increases,R�λr� undergo
level attraction and become degenerate at Γc , remaining con-
stant thereafter. The bottom panel shows that I�λr� increase
linearly with Γ and are the same for all eigenmodes for
Γ ≤ Γc , whereas past the transition point, slowly (and rapidly)
decaying eigenmodes emerge. It is worth noting that, in a wave-
guide beam splitter, the EP of order N � 1 appears naturally in
the N -photon subspace, and it is always located at Γc � 2κ
irrespective of N .

To detect the order of the EP in an experimentally friendly
manner [37], we consider the behavior of the intensity I�z�
within the N -photon subspace as a function of the propagation
distance z, or equivalently, the time. In general, when the lossy
beam splitter is excited with an N -photon input, the number-
resolving detectors at the output will register any of the
�N � 1��N � 2�∕2 possibilities jpiajqib where 0 ≤ p, q ≤ N
with p� q ≤ N . Thus, I�z� registers the fraction of trials
where the total number of photons detected is exactly N,
i.e., we post-select on the manifold where no photons are ab-
sorbed in the lossy waveguide [11]. For a normalized initial
state jψ�0�i, this intensity is given by

I�z� � hψ�0�jG†�z�G�z�jψ�0�i, (6)

where G�z� � exp�−iĤN z� is the decaying time evolution op-
erator. At the exceptional point Γ � 2κ, the Hamiltonian ĤN
satisfies the characteristic equation �λr − �ω0 − iκ�N �N�1 � 0;
therefore, the power-series expansion for G�z� terminates
at N th order in z. This implies the post-selection proba-
bility I�z� ∝ z2N exp�−NΓz� at long distance κz ≫ 1.

The numerically obtained post-selection probability I�z�, for
input states where N photons are injected into the neutral
waveguide for N ∈ f5, 7, 10g, is shown in Fig. 1(d). It clearly
shows that the order of the exceptional point is reflected in the
results. We note that, under realistic conditions, the ability to
resolve EPs of different orders will be adversely affected by noise
floor in the number-resolving detectors, nonunit fidelity of the
initial state, and the z-variation of the coupling and loss Γ
parameters [38,39]. The former will strongly affect subspaces
with small N , whereas the noise in the latter does not depend
on N .

To provide visual insight into the EP of order N � 1,
we consider an �N � 1�-dimensional normalized, complex
eigenvector jλri of the Hamiltonian [Eq. (2)] and represent
it by its three spin-projection components Jα,r � hλr jĴαjλri
(α � x, y, z). Note that the resulting 3D vectors Jr �
�Jx,r , Jy,r , Jz,r� are not orthogonal to each other in the
Hermitian limit. Figure 2 shows the evolution of these vectors
as a function of loss Γ for N � 4 (left column) and N � 5
(right column) photon-subspaces. When Γ � Γc∕2 [Figs. 2(a)
and 2(b)], the spin-projections lie in the x − y plane; at

Fig. 2. Evolution of spin-projections Jr for the N � 1 eigenmodes
in the post-selected manifold with N � 4 (left column) and N � 5
(right column) photons, considering different values of the dissi-
pation coefficient: (a), (b) Γ � Γc∕2, (c), (d) Γ � 0.99Γc , and
(e), (f ) Γ � 1.5Γc . The vector coordinates in the �Jx , Jy, Jz� space
are defined by the expectation values of the Ĵα operators in each
eigenstate. When Γ < Γc , the spin projections are in the x − y plane;
at the EP, they coalesce along the positive y axis; and when Γ > Γc ,
they are in the x − z plane.
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Γ � 0.99Γc [Figs. 2(c) and 2(d)], the eigenvectors start to
coalesce, and the spin-projections point along the positive
y axis, both indicating the close proximity to an EP. Past
the exceptional point, at Γ � 1.5Γc [Figs. 2(e) and 2(f )],
the spin-projections now lie in the x − z plane.

In order to obtain the photon-number-resolved popu-
lation dynamics of the lossy beam splitter, we note that the
time-evolution operator satisfies the Schrödinger equation
i∂zG�z� � ĤNG�z�. Therefore, it can be expressed in terms
of the total number operator N̂ and the angular momentum
operators Ĵα (with α � x, y, z) by using the Wei–Norman
method [40,41],

G�z� � e−i�ω0−iΓ∕2�N̂ z e−if ��z�Ĵ�e−if z �z�Ĵ z e−if −�z�Ĵ− , (7)

where Ĵ� � Ĵ x � iĴ y are the angular momentum raising and
lowering operator, respectively. Note that, because the photon-
number operator N̂ commutes with Ĵα, it can be treated as a
c-number. f ��z�, f z�z� are three complex functions that
parameterize the nonunitary time evolution operator and satisfy
the following set of coupled, nonlinear differential equations:

∂zf ��z� � κ�1� f 2
��z�� − Γf ��z�,

∂zf z�z� � −iΓ� 2iκf ��z�,
∂zf −�z� � κ exp�−if z�z��: (8)

The solutions of Eq. (8), subject to the initial condition
G�0� � 1, or equivalently f ��0� � f z�0� � 0, are given by

f ��z� �
Γ
2κ

� Δλ
2κ

�
tan�zΔλ∕2� − Γ∕Δλ

1� �Γ∕Δλ� tan�zΔλ∕2�

�
, (9)

f z�z� � −2i ln
�
cos

�
zΔλ
2

�
� Γ

Δλ
sin

�
zΔλ
2

��
: (10)

We note that the functions f ��z� � f −�z� are real, irrespec-
tive of whether Δλ is real or purely imaginary, while f z�z� is, in
general, complex. It is straightforward to check that, as the sys-
tem approaches the exceptional point, i.e., Δλ → 0, the func-
tions f ��z� ≈ κz∕�1� κz� approach unity at κz ≫ 1. On the
other hand, the function f z�z� ≈ −2i ln�1� κz�, in conjunc-
tion with the diagonal operator Ĵ z � diag�−N∕2,…,N∕2�,
gives rise to an algebraically growing time evolution operator

G�z� ∝ zN exp�−NΓz∕2�. Thus, our exact solution, Eq. (7),
encodes the order of the exceptional point.

3. POST-SELECTED DYNAMICS: NUMERICAL
RESULTS

Motivated by the realization of high-order multiphoton en-
tangled states [42,43], we explore the dynamics of the lossy
beam splitter excited with NOON-state initial conditions,
i.e., jϕ�0�i� �jN iaj0ib�j0iajN ib�∕

ffiffiffi
2

p ��j0�� jN ��∕ ffiffiffi
2

p
.

Although the post-selection probability I�z� � hϕ�z�jϕ�z�i
decreases exponentially with the propagation distance, we will
see that, within the post-selected N -photon manifold, signa-
tures of the PT -symmetry breaking transition and the order
of the exceptional point are clearly visible. To that end, we
consider the normalized, z-dependent occupation function

P�jm�; z� � j�mjϕ�z�ij2
hϕ�z�jϕ�z�i , (11)

which satisfies
PN

m�0 P�jm�; z� � 1. Figure 3 shows the results
for this occupation function for two different input states. The
top row in Fig. 3 shows the normalized mode occupations as a
function of z for an N � 5 state. When Γ � Γc∕4 [Fig. 3(a)],
we see an asymmetric, oscillatory motion across the six modes
with an energy flow from a low-loss region to the high-loss re-
gion. At the EP, Γ � Γc , the system reaches a steady state with
a weight distributed largely in the low-loss region [Fig. 3(b)].
Past the transition, Γ � 1.2Γc , the steady-state is reached
slower [Fig. 3(c)], indicating the emergence of slowly decaying
eigenmodes for the Hamiltonian Eq. (2). The bottom row in
Fig. 3 shows corresponding results for an N � 8 NOON state
input. Comparing the two rows, it is clear that the period of
asymmetric oscillations does not depend on N and the order of
the EP is reflected in the post-selected, N -photon manifold
results.

4. DISCUSSION

Despite tremendous interest due to the classical sensitivity
enhancement they offer [17–20], experimental realizations of
exceptional points of higher order have remained elusive. The
primary obstacle for such realizations in coupled waveguides,
resonators, or other traditional platforms is the fine tuning
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Fig. 3. Mode occupation dynamics in the post-selected manifold with NOON state input. (a) For N � 5 and small loss, the dynamics show
asymmetric oscillations. (b) At the EP, P�jm�, z� reaches a steady state with most of the weight localized in the low-loss region. (c) After the
transition, the steady-state is reached more slowly. (d)–(f ) show qualitatively similar results for an N � 8 NOON state input. The waveguide
beam splitter parameters are set to ω0 � κ � 1 cm−1.
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of system parameters, which is required by a higher-order sym-
metry necessary for eigenmode degeneracy [44]. When such
stringent constraints regarding the ratio of losses or nearest-
neighboring coupling amplitudes are not satisfied, a higher-
order EP splits into EPs of lower order.

Here, we have shown that a single, lossy waveguide beam
splitter can be used to realize robust EPs of arbitrary order with-
out any fine tuning required. In our proposal, the stringent
symmetries required for higher-order EPs are guaranteed by
the bosonic nature of input photons, and the linear nature
of loss. We have shown that the dynamics observed within
the post-selected N -photon subspace has an EP of order
N � 1. Thus, our analysis passes the burden of fine-tuning
the Hermitian and lossy parts of the Hamiltonian onto the dual
tasks of creating higher-order NOON states and number-
resolving photon detectors, a rapidly maturing technology
found in quantum optics laboratories across the globe
[25–27,45]. Our results, therefore, offer a realistic pathway
for realizing EPs of arbitrary order on demand in a single
platform.
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