• Photonics Insights
  • Vol. 1, Issue 1, R02 (2022)
Shaojie Ma1, Biao Yang2, and Shuang Zhang1、3、*
Author Affiliations
  • 1Department of Physics, University of Hong Kong, Hong Kong, China
  • 2College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
  • 3Department of Electrical & Electronic Engineering, University of Hong Kong, Hong Kong, China
  • show less
    DOI: 10.3788/PI.2022.R02 Cite this Article Set citation alerts
    Shaojie Ma, Biao Yang, Shuang Zhang. Topological photonics in metamaterials[J]. Photonics Insights, 2022, 1(1): R02 Copy Citation Text show less
    References

    [1] A. Hatcher. Algebraic Topology(2002).

    [2] K. V. Klitzing, G. Dorda, M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45, 494(1980).

    [3] R. B. Laughlin. Quantized Hall conductivity in two dimensions. Phys. Rev. B, 23, 5632(1981).

    [4] D. J. Thouless et al. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49, 405(1982).

    [5] K. S. Novoselov et al. Room-temperature quantum Hall effect in graphene. Science, 315, 1379(2007).

    [6] M. E. Cage et al. The Quantum Hall Effect(2012).

    [7] D. C. Tsui, H. L. Stormer, A. C. Gossard. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 48, 1559(1982).

    [8] G. Moore, N. Read. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B, 360, 362(1991).

    [9] C. L. Kane, E. J. Mele. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett., 95, 146802(2005).

    [10] C. L. Kane, E. J. Mele. Quantum spin Hall effect in grapheme. Phys. Rev. Lett., 95, 226801(2005).

    [11] B. A. Bernevig, T. L. Hughes, S.-C. Zhang. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 314, 1757(2006).

    [12] B. A. Bernevig, S.-C. Zhang. Quantum spin Hall effect. Phys. Rev. Lett., 96, 106802(2006).

    [13] C.-X. Liu et al. Quantum anomalous Hall effect in Hg1–yMnyTe quantum wells. Phys. Rev. Lett., 101, 146802(2008).

    [14] C.-Z. Chang et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science, 340, 167(2013).

    [15] Y. Deng et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science, 367, 895(2020).

    [16] M. Stone. Quantum Hall Effect(1992).

    [17] H. L. Stormer, D. C. Tsui, A. C. Gossard. The fractional quantum Hall effect. Rev. Mod. Phys., 71, S298(1999).

    [18] J. Sinova et al. Spin Hall effects. Rev. Mod. Phys., 87, 1213(2015).

    [19] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [20] S. Raghu, F. D. M. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A, 78, 033834(2008).

    [21] Z. Wang et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett., 100, 013905(2008).

    [22] Z. Wang et al. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature, 461, 772(2009).

    [23] L. Lu et al. Weyl points and line nodes in gyroid photonic crystals. Nat. Photonics, 7, 294(2013).

    [24] M. C. Rechtsman et al. Photonic Floquet topological insulators. Nature, 496, 196(2013).

    [25] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821(2014).

    [26] L. Lu et al. Experimental observation of Weyl points. Science, 349, 622(2015).

    [27] L. Lu et al. Symmetry-protected topological photonic crystal in three dimensions. Nat. Phys., 12, 337(2016).

    [28] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological states in photonic systems. Nat. Phys., 12, 626(2016).

    [29] A. B. Khanikaev, G. Shvets. Two-dimensional topological photonics. Nat. Photonics, 11, 763(2017).

    [30] H. He et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature, 560, 61(2018).

    [31] S. Stutzer et al. Photonic topological Anderson insulators. Nature, 560, 461(2018).

    [32] O. Zilberberg et al. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature, 553, 59(2018).

    [33] J. Noh et al. Topological protection of photonic mid-gap defect modes. Nat. Photonics, 12, 408(2018).

    [34] M. Li et al. Higher-order topological states in photonic kagome crystals with long-range interactions. Nat. Photonics, 14, 89(2019).

    [35] Z. Yang et al. Topological acoustics. Phys. Rev. Lett., 114, 114301(2015).

    [36] S. D. Huber. Topological mechanics. Nat. Phys., 12, 621(2016).

    [37] G. Ma, M. Xiao, C. T. Chan. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys., 1, 281(2019).

    [38] N. P. Armitage, E. J. Mele, A. Vishwanath. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys., 90, 015001(2018).

    [39] T. Ozawa et al. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [40] B. Q. Lv, T. Qian, H. Ding. Experimental perspective on three-dimensional topological semimetals. Rev. Mod. Phys., 93, 025002(2021).

    [41] C. Simovski. Spectroscopy, material parameters of metamaterials (a review). Opt. Spectrosc., 107, 726(2009).

    [42] O. Sakai, K. Tachibana. Technology, plasmas as metamaterials: a review. Plasma Sources Sci. Technol., 21, 013001(2012).

    [43] S. Sun et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380(2019).

    [44] X. Yang et al. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photonics, 6, 450(2012).

    [45] A. Poddubny et al. Hyperbolic metamaterials. Nat. Photonics, 7, 948(2013).

    [46] Z. Liu et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [47] P. Shekhar, J. Atkinson, Z. Jacob. Hyperbolic metamaterials: fundamentals and applications. Nano Converg., 1, 14(2014).

    [48] J. K. Gansel et al. Gold helix photonic metamaterial as broadband circular polarizer. Science, 325, 1513(2009).

    [49] S. Zhang et al. Negative refractive index in chiral metamaterials. Phys. Rev. Lett., 102, 023901(2009).

    [50] V. S. Asadchy, A. Díaz-Rubio, S. Tretyakov. Bianisotropic metasurfaces: physics and applications. Nanophotonics, 7, 1069(2018).

    [51] L. Peng et al. Transverse photon spin of bulk electromagnetic waves in bianisotropic media. Nat. Photonics, 13, 878(2019).

    [52] S. Sun et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426(2012).

    [53] F. Ding, A. Pors, S. Bozhevolnyi. Gradient metasurfaces: a review of fundamentals and applications. Rep. Prog. Phys., 81, 026401(2017).

    [54] H. Jia et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials. Science, 363, 148(2019).

    [55] L. Zhou, S. T. Chui. Eigenmodes of metallic ring systems: a rigorous approach. Phys. Rev. B, 74, 035419(2006).

    [56] R. K. Zhao, T. Koschny, C. M. Soukoulis. Chiral metamaterials: retrieval of the effective parameters with and without substrate. Opt. Express, 18, 14553(2010).

    [57] A. Raman, S. Fan. Photonic band structure of dispersive metamaterials formulated as a Hermitian eigenvalue problem. Phys. Rev. Lett., 104, 087401(2010).

    [58] Y. Liu, G. P. Wang, S. Zhang. A nonlocal effective medium description of topological Weyl metamaterials. Laser Photonics Rev., 15, 2100129(2021).

    [59] T. Van Mechelen, Z. Jacob. Photonic Dirac monopoles and skyrmions: spin-1 quantization [Invited]. Opt. Mater. Express, 9, 95(2018).

    [60] K. Y. Bliokh, D. Smirnova, F. Nori. Quantum spin Hall effect of light. Science, 348, 1448(2015).

    [61] Y. Yang et al. Topological triply degenerate point with double Fermi arcs. Nat. Phys., 15, 645(2019).

    [62] B. Bradlyn et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science, 353, aaf5037(2016).

    [63] W. Gao et al. Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett., 114, 037402(2015).

    [64] B. Yang et al. Direct observation of topological surface-state arcs in photonic metamaterials. Nat. Commun., 8, 97(2017).

    [65] M. Xiao, Q. Lin, S. Fan. Hyperbolic Weyl point in reciprocal chiral metamaterials. Phys. Rev. Lett., 117, 057401(2016).

    [66] C. Zhang et al. Cycling Fermi arc electrons with Weyl orbits. Nat. Rev. Phys., 3, 660(2021).

    [67] B. Yan, C. Felser. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys., 8, 337(2017).

    [68] B. Q. Lv et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X, 5, 031013(2015).

    [69] S. Jia, S. Y. Xu, M. Z. Hasan. Weyl semimetals, Fermi arcs and chiral anomalies. Nat. Mater., 15, 1140(2016).

    [70] A. A. Soluyanov et al. Type-II Weyl semimetals. Nature, 527, 495(2015).

    [71] H. B. Nielsen, M. Ninomiya. A no-go theorem for regularizing chiral fermions. Phys. Lett. B, 105, 219(1981).

    [72] H. B. Nielsen, M. Ninomiya. Absence of neutrinos on a lattice: (I). proof by homotopy theory. Nucl. Phys. B, 185, 20(1981).

    [73] H. B. Nielsen, M. Ninomiya. Absence of neutrinos on a lattice: (II). intuitive topological proof. Nucl. Phys. B, 193, 173(1981).

    [74] D. Friedan. A proof of the Nielsen-Ninomiya theorem. Commun. Math. Phys., 85, 481(1982).

    [75] X. Wan et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 83, 205101(2011).

    [76] B. Yang et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures. Science, 359, 1013(2018).

    [77] Ş. K. Özdemir. Fermi arcs connect topological degeneracies. Science, 359, 995(2018).

    [78] W. Gao et al. Photonic Weyl degeneracies in magnetized plasma. Nat. Commun., 7, 12435(2016).

    [79] Y. Yang et al. Ideal unconventional Weyl point in a chiral photonic metamaterial. Phys. Rev. Lett., 125, 143001(2020).

    [80] A. A. Soluyanov et al. Type-II Weyl semimetals. Nature, 527, 495(2015).

    [81] Z.-M. Yu, Y. Yao, S. Yang. Predicted unusual magnetoresponse in type-II Weyl semimetals. Phys. Rev. Lett., 117, 077202(2016).

    [82] J. Ma et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater., 18, 476(2019).

    [83] T. Dubcek et al. Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space. Phys. Rev. Lett., 114, 225301(2015).

    [84] M. Xiao et al. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys., 11, 920(2015).

    [85] Q. Wang et al. Optical interface states protected by synthetic Weyl points. Phys. Rev. X, 7, 031032(2017).

    [86] C. Fang et al. Topological semimetals with helicoid surface states. Nat. Phys., 12, 936(2016).

    [87] A. Zyuzin, A. Burkov. Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B, 86, 115133(2012).

    [88] D. Son, B. Spivak. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B, 88, 104412(2013).

    [89] J. Zhou, H.-R. Chang, D. Xiao. Plasmon mode as a detection of the chiral anomaly in Weyl semimetals. Phys. Rev. B, 91, 035114(2015).

    [90] H. Cheng et al. Vortical reflection and spiraling Fermi arcs with Weyl metamaterials. Phys. Rev. Lett., 125, 093904(2020).

    [91] Y. Yang et al. Veselago lensing with Weyl metamaterials. Optica, 8, 249(2021).

    [92] H. Jia et al. Chiral transport of pseudospinors induced by synthetic gravitational field in photonic Weyl metamaterials. Phys. Rev. B, 104, 045132(2021).

    [93] F. Guinea, M. I. Katsnelson, A. K. Geim. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys., 6, 30(2009).

    [94] R. Ilan, A. G. Grushin, D. I. Pikulin. Pseudo-electromagnetic fields in 3D topological semimetals. Nat. Rev. Phys., 2, 29(2020).

    [95] D. Wang et al. Photonic Weyl points due to broken time-reversal symmetry in magnetized semiconductor. Nat. Phys., 15, 1150(2019).

    [96] G.-G. Liu et al. Observation of Weyl point pair annihilation in a gyromagnetic photonic crystal(2021).

    [97] Z.-Y. Wang et al. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin-orbit coupling. Science, 372, 271(2021).

    [98] S.-M. Huang et al. New type of Weyl semimetal with quadratic double Weyl fermions. Proc. Natl. Acad. Sci. U S A, 113, 1180(2016).

    [99] T. Zhang et al. Double-Weyl phonons in transition-metal monosilicides. Phys. Rev. Lett., 120, 016401(2018).

    [100] H. He et al. Observation of quadratic Weyl points and double-helicoid arcs. Nat. Commun., 11, 1820(2020).

    [101] Q. Yan et al. Unconventional Weyl exceptional contours in non-Hermitian photonic continua. Photonics Res., 9, 2435(2021).

    [102] C. Fang et al. Topological nodal line semimetals. Chin. Phys. B, 25, 117106(2016).

    [103] Q. Xu et al. Topological nodal line semimetals in the CaP3 family of materials. Phys. Rev. B, 95, 045136(2017).

    [104] J.-M. Carter et al. Semimetal and topological insulator in perovskite iridates. Phys. Rev. B, 85, 115105(2012).

    [105] G. van Miert, C. Ortix, C. M. Smith. Topological origin of edge states in two-dimensional inversion-symmetric insulators and semimetals. 2D Mater., 4, 015023(2016).

    [106] G. Bian et al. Drumhead surface states and topological nodal-line fermions in TlTaSe2. Phys. Rev. B, 93, 121113(2016).

    [107] Y.-H. Chan et al. Ca3P2 and other topological semimetals with line nodes and drumhead surface states. Phys. Rev. B, 93, 205132(2016).

    [108] W. Gao et al. Experimental observation of photonic nodal line degeneracies in metacrystals. Nat. Commun., 9, 950(2018).

    [109] L. Xia et al. Observation of hourglass nodal lines in photonics. Phys. Rev. Lett., 122, 103903(2019).

    [110] E. Yang et al. Observation of non-Abelian nodal links in photonics. Phys. Rev. Lett., 125, 033901(2020).

    [111] Q. Guo et al. Experimental observation of non-Abelian topological charges and edge states. Nature, 594, 195(2021).

    [112] A. Demetriadou, J. B. Pendry. Taming spatial dispersion in wire metamaterial. J. Phys. Condens. Matter, 20, 295222(2008).

    [113] B. Zheng et al. Hourglass phonons jointly protected by symmorphic and nonsymmorphic symmetries. Phys. Rev. B, 104, L060301(2021).

    [114] Q. Wu, A. A. Soluyanov, T. Bzdusek. Non-Abelian band topology in noninteracting metals. Science, 365, 1273(2019).

    [115] T. Jiang et al. Four-band non-Abelian topological insulator and its experimental realization. Nat. Commun., 12, 6471(2021).

    [116] S. M. Young et al. Dirac semimetal in three dimensions. Phys. Rev. Lett., 108, 140405(2012).

    [117] Z. Liu et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science, 343, 864(2014).

    [118] S. Borisenko et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett., 113, 027603(2014).

    [119] Q. Guo et al. Three dimensional photonic Dirac points in metamaterials. Phys. Rev. Lett., 119, 213901(2017).

    [120] Q. Guo et al. Observation of three-dimensional photonic Dirac points and spin-polarized surface arcs. Phys. Rev. Lett., 122, 203903(2019).

    [121] S. Ma et al. Linked Weyl surfaces and Weyl arcs in photonic metamaterials. Science, 373, 572(2021).

    [122] A. B. Khanikaev et al. Photonic topological insulators. Nat. Mater., 12, 233(2013).

    [123] K. Hasebe. SO(5) Landau models and nested Nambu matrix geometry. Nucl. Phys. B, 956, 115012(2020).

    [124] C. N. Yang. SU2 monopole harmonics. J. Math. Phys., 19, 2622(1978).

    [125] C. N. Yang. Generalization of Dirac’s monopole to SU2 gauge fields. J. Math. Phys., 19, 320(1978).

    [126] B. Lian, S. C. Zhang. Five-dimensional generalization of the topological Weyl semimetal. Phys. Rev. B, 94, 041105(2016).

    [127] B. Lian, S. C. Zhang. Weyl semimetal and topological phase transition in five dimensions. Phys. Rev. B, 95, 235106(2017).

    [128] J. Y. Chen, B. Lian, S. C. Zhang. Doubling theorem and boundary states of five-dimensional Weyl semimetal. Phys. Rev. B, 100, 075112(2019).

    [129] X. L. Qi, T. L. Hughes, S. C. Zhang. Topological field theory of time-reversal invariant insulators. Phys. Rev. B, 78, 195424(2008).

    [130] Y. Yang et al. Realization of a three-dimensional photonic topological insulator. Nature, 565, 622(2019).

    [131] B. Yang et al. Momentum space toroidal moment in a photonic metamaterial. Nat. Commun., 12, 1784(2021).

    [132] R. S. Mong, J. H. Bardarson, J. E. Moore. Quantum transport and two-parameter scaling at the surface of a weak topological insulator. Phys. Rev. Lett., 108, 076804(2012).

    [133] T. Kaelberer et al. Toroidal dipolar response in a metamaterial. Science, 330, 1510(2010).

    [134] N. Papasimakis et al. Electromagnetic toroidal excitations in matter and free space. Nat. Mater., 15, 263(2016).

    [135] N. A. Spaldin, M. Fiebig, M. Mostovoy. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J. Phys. Condens. Matter., 20, 434203(2008).

    [136] D. Xiao, W. Yao, Q. Niu. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett., 99, 236809(2007).

    [137] S. Roy et al. Tunable axial gauge fields in engineered Weyl semimetals: semiclassical analysis and optical lattice implementations. 2D Mater., 5, 024001(2018).

    [138] T. Dubček et al. Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space. Phys. Rev. Lett., 114, 225301(2015).

    [139] J. Bravo-Abad et al. Weyl points in photonic-crystal superlattices. 2D Mater., 2, 034013(2015).

    [140] Q. Wang et al. Optical interface states protected by synthetic Weyl points. Phys. Rev. X, 7, 031032(2017).

    [141] T. Ochiai. Floquet–Weyl and Floquet-topological-insulator phases in a stacked two-dimensional ring-network lattice. J. Phys. Condens. Matter, 28, 425501(2016).

    [142] H. Wang, L. Zhou, Y. D. Chong. Floquet Weyl phases in a three-dimensional network model. Phys. Rev. B, 93, 144114(2016).

    [143] Y. Lu et al. Probing the Berry curvature and Fermi arcs of a Weyl circuit. Phys. Rev. B, 99, 020302(2019).

    [144] K. Luo, R. Yu, H. Weng. Topological nodal states in circuit lattice. Research, 2018, 6793752(2018).

    [145] F. Mei et al. Witnessing topological Weyl semimetal phase in a minimal circuit-QED lattice. Quantum Sci. Technol., 1, 015006(2016).

    [146] Z. Xiong et al. Hidden-symmetry-enforced nexus points of nodal lines in layer-stacked dielectric photonic crystals. Light Sci. Appl., 9, 176(2020).

    [147] T. Kawakami, X. Hu. Symmetry-guaranteed nodal-line semimetals in an FCC lattice. Phys. Rev. B, 96, 235307(2017).

    [148] Q. Yan et al. Experimental discovery of nodal chains. Nat. Phys., 14, 461(2018).

    [149] W. Deng et al. Nodal rings and drumhead surface states in phononic crystals. Nat. Commun., 10, 1769(2019).

    [150] H. Wang et al. Three-dimensional photonic Dirac points stabilized by point group symmetry. Phys. Rev. B, 93, 235155(2016).

    [151] A. Slobozhanyuk et al. Three-dimensional all-dielectric photonic topological insulator. Nat. Photonics, 11, 130(2017).

    [152] H.-X. Wang et al. Type-II Dirac photons. NPJ Quantum Mater., 2, 54(2017).

    [153] A. B. Khanikaev et al. Photonic topological insulators. Nat. Mater., 12, 233(2013).

    [154] X. Cheng et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater., 15, 542(2016).

    [155] T. Ma, G. Shvets. All-Si valley-Hall photonic topological insulator. New J. Phys., 18, 025012(2016).

    [156] C. He et al. Photonic topological insulator with broken time-reversal symmetry. Proc. Natl. Acad. Sci. U S A, 113, 4924(2016).

    [157] A. B. Khanikaev et al. Photonic topological insulators. Nat. Mater., 12, 233(2013).

    [158] N. Shahrubudin, T. C. Lee, R. Ramlan. An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf., 35, 1286(2019).

    [159] C. Liu et al. Disorder-induced topological state transition in photonic metamaterials. Phys. Rev. Lett., 119, 183901(2017).

    [160] C. Liu et al. Disorder-immune photonics based on Mie-resonant dielectric metamaterials. Phys. Rev. Lett., 123, 163901(2019).

    [161] X. N. Liu et al. An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett., 98, 251907(2011).

    [162] X. Zhou, X. Liu, G. Hu. Elastic metamaterials with local resonances: an overview. Theor. Appl. Mech. Lett., 2, 041001(2012).

    [163] L. Lu, H. Gao, Z. Wang. Topological one-way fiber of second Chern number. Nat. Commun., 9, 1(2018).

    [164] L. Wang, S.-K. Jian, H. Yao. Topological photonic crystal with equifrequency Weyl points. Phys. Rev. A, 93, 061801(2016).

    [165] J. Xiong et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science, 350, 413(2015).

    [166] L. Zhang, X.-Y. Song, F. Wang. Quantum oscillation in narrow-gap topological insulators. Phys. Rev. Lett., 116, 046404(2016).

    [167] P. L. Cai et al. Drastic pressure effect on the extremely large magnetoresistance in WTe2: quantum oscillation study. Phys. Rev. Lett., 115, 057202(2015).

    [168] G. Rosenberg, H.-M. Guo, M. Franz. Wormhole effect in a strong topological insulator. Phys. Rev. B, 82, 041104(2010).

    [169] Y. Yang et al. Synthesis and observation of non-Abelian gauge fields in real space. Science, 365, 1021(2019).

    [170] Y. Yang et al. Non-Abelian generalizations of the Hofstadter model: spin-orbit-coupled butterfly pairs. Light Sci. Appl., 9, 177(2020).

    [171] R. El-Ganainy et al. Non-Hermitian physics and PT symmetry. Nat. Phys., 14, 11(2018).

    [172] C. M. Bender. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 70, 947(2007).

    [173] S. Yu, X. Piao, N. Park. Topological hyperbolic lattices. Phys. Rev. Lett., 125, 053901(2020).

    [174] E. Lustig, Y. Sharabi, M. Segev. Topological aspects of photonic time crystals. Optica, 5, 1390(2018).

    [175] G. G. Liu et al. Topological Anderson insulator in disordered photonic crystals. Phys. Rev. Lett., 125, 133603(2020).

    [176] W. A. Benalcazar, B. A. Bernevig, T. L. Hughes. Quantized electric multipole insulators. Science, 357, 61(2017).

    [177] S. Liu et al. Octupole corner state in a three-dimensional topological circuit. Light Sci. Appl., 9, 145(2020).

    [178] B. Xie et al. Higher-order band topology. Nat. Rev. Phys., 3, 520(2021).

    Shaojie Ma, Biao Yang, Shuang Zhang. Topological photonics in metamaterials[J]. Photonics Insights, 2022, 1(1): R02
    Download Citation