• Journal of Inorganic Materials
  • Vol. 38, Issue 9, 1044 (2023)
Lun ZHANG, Mei LYU, and Jun ZHU*
Author Affiliations
  • Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
  • show less
    DOI: 10.15541/jim20230049 Cite this Article
    Lun ZHANG, Mei LYU, Jun ZHU. Research Progress of Cs2AgBiBr6 Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2023, 38(9): 1044 Copy Citation Text show less
    References

    [1] A KOMIJA, K TESHIMA, Y SHIRAI et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131, 6050(2009).

    [2] . Best research-cell efficiency chart.. https://www.nrel.gov/pv/cell-efficiency.html

    [3] J ZHAO, L WEI, C JIA et al. Metallic tin substitution of organic lead perovskite films for efficient solar cells. Journal of Materials Chemistry A, 6, 20224(2018).

    [4] D LIU, Y X YIN, F J LIU et al. Thickness-dependent highly sensitive photodetection behavior of lead-free all-inorganic CsSnBr3 nanoplates. Rare Metals, 41, 1753(2022).

    [5] W HU, X HE, Z FANG et al. Bulk heterojunction gifts bismuth- based lead-free perovskite solar cells with record efficiency. Nano Energy, 104362(2020).

    [6] Q JIA, C LI, W TIAN et al. Large-grained all-inorganic bismuth- based perovskites with narrow band gap via Lewis acid-base adduct approach. ACS Applied Materials & Interfaces, 12, 43876(2020).

    [7] Z MA, Z SHI, D YANG et al. Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Letters, 5, 385(2020).

    [8] W GAO, W RAN, J XI et al. High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency. ChemPhysChem, 19, 1696(2018).

    [10] X JIANG, H LI, Q ZHOU et al. One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. Journal of the American Chemical Society, 143, 10970(2021).

    [11] J ZHOU, M HAO, Y ZHANG et al. Chemo-thermal surface dedoping for high-performance tin perovskite solar cells. Matter, 5, 683(2022).

    [12] B B YU, Z CHEN, Y ZHU et al. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Advanced Materials, 33, 2102055(2021).

    [13] A H SLAVNEY, T HU, A M LINDENBERG et al. A bismuth- halide double perovskite with long carrier recombination lifetime for photovoltaic applications. Journal of the American Chemical Society, 138, 2138(2016).

    [14] W PAN, H WU, J LUO et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 11, 726(2017).

    [15] H J FENG, W DENG, K YANG et al. Double perovskite Cs2BBiX6 (B=Ag, Cu; X=Br, Cl)/TiO2 heterojunction: an efficient Pb-free perovskite interface for charge extraction. The Journal of Physical Chemistry C, 121, 4471(2017).

    [16] Y J LI, T WU, L SUN et al. Lead-free and stable antimony- silver-halide double perovskite (CH3NH3)2AgSbI6. RSC Advances, 7, 35175(2017).

    [17] F IGBARI, Z K WANG, L S LIAO. Progress of lead-free halide double perovskites. Advanced Energy Materials, 9, 1803150(2019).

    [18] C J BARTEL, J M CLARY, C SUTTON et al. Inorganic halide double perovskites with optoelectronic properties modulated by sublattice mixing. Journal of the American Chemical Society, 142, 5135(2020).

    [19] W NING, F GAO. Structural and functional diversity in lead-free halide perovskite materials. Advanced Materials, 31, 1900326(2019).

    [20] V PECUNIA, L G OCCHIPINTI, A Chakraborty et al. Lead-free halide perovskite photovoltaics: challenges, open questions, and opportunities. APL Materials, 8, 100901(2020).

    [21] E GREUL, M L PETRUS, A BINEK et al. Highly stable, phase pure Cs2ABiBr6 double perovskite thin films for optoelectronic applications. Journal of Materials Chemistry A, 5, 19972(2017).

    [22] Z ZHANG, Q SUN, Y LU et al. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nature Communications, 3397(2022).

    [23] Y ZHAO, F MA, Z QU et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 377, 531(2022).

    [24] S JEONG, S SEO, H YANG et al. Cyclohexylammonium-based 2D/3D perovskite heterojunction with funnel-like energy band alignment for efficient solar cells (23.91%). Advanced Energy Materials, 11, 2102236(2021).

    [25] H MIN, M KIM, S LEE et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 366, 749(2019).

    [26] K XIAO, R LIN, Q HAN et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface- anchoring zwitterionic antioxidant. Nature Energy, 5, 870(2020).

    [27] W TRESS, M T SIRTL. Cs2AgBiBr6 double perovskites as lead-free alternatives for perovskite solar cells. Solar RRL, 6, 2100770(2022).

    [28] C N SAVORY, A WALSH, D O SCANLON et al. Can Pb-free halide double perovskites support high-efficiency solar cells. ACS Energy Letters, 1, 949(2016).

    [29] S C YADAV, A SRIVASTAVA, V MANJUNATH et al. Properties, performance and multidimensional applications of stable lead-free Cs2AgBiBr6 double perovskite. Materials Today Physics, 100731(2022).

    [30] P K KUNG, M H LI, P Y LIN et al. Lead-free double perovskites for perovskite solar cells. Solar RRL, 4, 1900306(2020).

    [31] C LI, X LU, W DING et al. Formability of ABX3 (X=F, Cl, Br, I) halide perovskites. Acta Crystallographica Section B: Structural Science, 64, 702(2008).

    [32] C J BARTEL, C SUTTON, B P GOLDSMITH et al. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 5, eaav0693(2019).

    [33] J SU, T MOU, J WEN et al. First-principles study on the structure, electronic, and optical properties of Cs2AgBiBr6-xClx mixed-halide double perovskites. The Journal of Physical Chemistry C, 124, 5371(2020).

    [34] D ZHAO, B WANG, C LIANG et al. Facile deposition of high-quality Cs2AgBiBr6 films for efficient double perovskite solar cells. Science China Materials, 63, 1518(2020).

    [35] M WANG, P ZENG, S BAI et al. High-quality sequential- vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells. Solar RRL, 2, 1800217(2018).

    [36] F IGBARI, R WANG, Z K WANG et al. Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells. Nano Letters, 19, 2066(2019).

    [37] C WU, Q ZHANG, Y LIU et al. The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Advanced Science, 5, 1700759(2018).

    [38] N DAEM, J DEWALQUE, F LANG et al. Spray-coated lead-free Cs2AgBiBr6 double perovskite solar cells with high open-circuit voltage. Solar RRL, 5, 2100422(2021).

    [39] Y REN, B DUAN, Y XU et al. New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach. Science China Materials, 60, 392(2017).

    [40] T TODOROV, D B MITZI. Direct liquid coating of chalcopyrite light-asorbing layers for photovoltaic devices. European Journal of Inorganic Chemistry, 2010, 17(2010).

    [41] J YANG, C BAO, W NING et al. Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2AgBiBr6 double perovskite films. Advanced Optical Materials, 7, 1801732(2019).

    [42] J DUAN, Y YANG, J TANG et al. MACl enhanced electron extraction in all-inorganic Cs2AgBiBr6perovskite photovoltaics. Chemical Communications, 59, 1173(2023).

    [43] M PANTALER, K T CHO, V I E QUELOZ et al. Hysteresis-free lead-free double-perovskite solar cells by interface engineering. ACS Energy Letters, 3, 1781(2018).

    [44] W NING, F WANG, B WU et al. Long electron-hole diffusion length in high-quality lead-free double perovskite films. Advanced Materials, 30, 1706246(2018).

    [45] N T K THANH, N MACLEAN, S MAHIDDINE. Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 114, 7610(2014).

    [46] W A DUNLAP-SHOHL, Y ZHOU, N P PADTURE et al. Synthetic approaches for halide perovskite thin films. Chemical Reviews, 119, 3193(2018).

    [47] M JUNG, S G JI, G KIM et al. Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chemical Society Reviews, 48, 2011(2019).

    [48] B DING, L GAO, L LIANG et al. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method. ACS Applied Materials & Interfaces, 8, 20067(2016).

    [49] J E BISHOP, C D READ, J A SMITH et al. Fully spray-coated triple-cation perovskite solar cells. Scientific Reports, 10, 6610(2020).

    [50] S H TURREN-CRUZ, A HAGFELDT, M SALIBA. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 362, 449(2018).

    [51] R UCHIDA, S BINET, N ARORA et al. Insights about the absence of Rb cation from the 3D perovskite lattice: effect on the structural, morphological, and photophysical properties and photovoltaic performance. Small, 14, 1802033(2018).

    [52] C YI, J LUO, S MELONI et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy & Environmental Science, 9, 656(2016).

    [53] Z ZHANG, C WU, D WANG et al. Improvement of Cs2AgBiBr6 double perovskite solar cell by rubidium doping. Organic Electronics, 204(2019).

    [54] J LI, J DUAN, J DU et al. Alkali metal ion-regulated lead-free, all-inorganic double perovskites for HTM-free, carbon-based solar cells. ACS Applied Materials & Interfaces, 12, 47408(2020).

    [55] E T MCCLURE, M R BALL, W WINDL et al. Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chemistry of Materials, 28, 1348(2016).

    [56] M R FILIP, S HILLMAN, A A HAGHIGHIRAD et al. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6and Cs2BiAgBr6 from theory and experiment. The Journal of Physical Chemistry Letters, 7, 2579(2016).

    [57] P SEBASTIÁ-LUNA, J CALBO, N ALBIACH-SEBASTIÁN et al. Tuning the optical absorption of Sn-, Ge-, and Zn-substituted Cs2AgBiBr6 double perovskites: structural and electronic effects. Chemistry of Materials, 33, 8028(2021).

    [58] Y LIU, L ZHANG, M WANG et al. Bandgap-tunable double-perovskite thin films by solution processing. Materials Today, 25(2019).

    [59] M PANTALER, S OLTHOF, K MEERHOLZ et al. Bismuth-antimony mixed double perovskites Cs2AgBi1-xSbxBr6 in solar cells. MRS Advances, 4, 3545(2019).

    [60] N PAI, J LU, M WANG et al. Enhancement of the intrinsic light harvesting capacity of Cs2AgBiBr6 double perovskite via modification with sulphide. Journal of Materials Chemistry A, 8, 2008(2020).

    [61] M LYU, D K LEEA, N G PARK. Effect of alkaline earth metal chloride additives BCl2 (B = Mg, Ca, Sr and Ba) on photovoltaic performance of FAPbI3 based perovskite solar cells. Nanoscale Horiz, 5, 1332(2020).

    [62] M LYU, N G PARK. Effect of additives AX (A=FA, MA, Cs, Rb, NH4, X=Cl, Br, I) in FAPbI3 on photovoltaic parameters of perovskite solar cells. Solar RRL, 4, 2000331(2020).

    [63] J FENG, X ZHU, Z YANG et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Advanced Materials, 30, 1801418(2018).

    [64] T LI, Y PAN, Z WANG et al. Additive engineering for highly efficient organic-inorganic halide perovskite solar cells: recent advances and perspectives. Journal of Materials Chemistry A, 5, 12602(2017).

    [65] D T MOORE, H SAI, K W TAN et al. Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth. Journal of the American Chemical Society, 137, 2350(2015).

    [66] H WU, Y WANG, A LIU et al. Methylammonium bromide assisted crystallization for enhanced lead-free double perovskite photovoltaic performance. Advanced Functional Materials, 32, 2109402(2022).

    [67] X YANG, A XIE, H XIANG et al. First investigation of additive engineering for highly efficient Cs2AgBiBr6-based lead-free inorganic perovskite solar cells. Applied Physics Reviews, 041402(2021).

    [68] A YANG, L ZHANG, Y XU et al. VOC over 1.2 V for Cs2AgBiBr6 solar cells based on formamidinium acetate additive. Journal of Materials Science: Materials in Electronics, 18758(2022).

    [69] L ZHANG, Y XU, P J NIU et al. Regulating the film crystallization kinetics with thiourea additive in Cs2AgBiBr6 solar cells. Journal of Physics D: Applied Physics, 56, 075501(2023).

    [70] J LI, X MENG, Z WU et al. Pinning bromide ion with ionic liquid in lead-free Cs2AgBiBr6 double perovskite solar cells. Advanced Functional Materials, 32, 2112991(2022).

    [71] B XIAO, Y TAN, Z YI et al. Band matching strategy for all-inorganic Cs2AgBiBr6 double perovskite solar cells with high photovoltage. ACS Applied Materials & Interfaces, 13, 37027(2021).

    [72] Z ZHANG, C WU, D WANG et al. Efficient nonlead double perovskite solar cell with multiple hole transport layers. ACS Applied Energy Materials, 3, 9594(2020).

    [73] T LUO, Y ZHANG, X CHANG et al. Dual interfacial engineering for efficient Cs2AgBiBr6 based solar cells. Journal of Energy Chemistry, 373(2021).

    [74] J LI, F YAN, P YANG et al. Suppressing interfacial shunt loss via functional polymer for performance improvement of lead-free Cs2AgBiBr6 double perovskite solar cells. Solar RRL, 6, 2100791(2021).

    [75] B LI, X WU, S ZHANG et al. Efficient and stable Cs2AgBiBr6 double perovskite solar cells through in-situ surface modulation. Chemical Engineering Journal, 137144(2022).

    [76] X YANG, Y CHEN, P LIU et al. Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer. Advanced Functional Materials, 30, 2001557(2020).

    [77] Z LI, P WANG, C MA et al. Single-layered MXene nanosheets doping TiO2 for efficient and stable double perovskite solar cells. Journal of the American Chemical Society, 143, 2593(2021).

    [78] B WANG, N LI, L YANG et al. Chlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cells. Journal of the American Chemical Society, 143, 2207(2021).