• Journal of Innovative Optical Health Sciences
  • Vol. 9, Issue 3, 1630007 (2016)
Junling Chen1、2, Ti Tong3、*, and Hongda Wang1
Author Affiliations
  • 1State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Jilin 130022, P. R. China
  • 2University of Chinese Academy of Sciences Beijing 100049, P. R. China
  • 3Department of Thoracic Surgery The Second Hospital of Jilin University Changchun Jilin 130041, P. R. China
  • show less
    DOI: 10.1142/s179354581630007x Cite this Article
    Junling Chen, Ti Tong, Hongda Wang. Super-resolution imaging in glycoscience: New developments and challenges[J]. Journal of Innovative Optical Health Sciences, 2016, 9(3): 1630007 Copy Citation Text show less
    References

    [1] A. Ishio, T. Sasamura, T. Ayukawa, J. Kuroda, H. O. Ishikawa, N. Aoyama, K. Matsumoto, T. Gushiken, T. Okajima, T. Yamakawa, "O-fucose monosaccharide of Drosophila Notch has a temperature- sensitive function and cooperates with O-glucose glycan in Notch transport and Notch signaling activation," J. Biol. Chem. 290, 505–519 (2015).

    [2] K. Kaszuba, M. Grzybek, A. Or owski, R. Danne, T. Róg, K. Simons, ü. Coskun, I. Vattulainen, "N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes," Proc. Natl. Acad. Sci. USA 112, 4334–4339 (2015).

    [3] Y. Pan, F. Wang, Y. Liu, Y.-G. Yang, H. Wang, "Single-molecule-force spectroscopy study of the mechanism of interactions between TSP-1 and CD47," Sci. China Chem. 57, 1716–1722 (2014).

    [4] C. Boscher, J.W. Dennis, I. R. Nabi, "Glycosylation, galectins and cellular signaling," Curr. Opin. Cell Biol. 23, 383–392 (2011).

    [5] M. Sperandio, C. A. Gleissner, K. Ley, "Glycosylation in immune cell trafficking," Immunol. Rev. 230, 97– 113 (2009).

    [6] I. Bucior, M. M. Burger, "Carbohydrate–carbohydrate interaction as a major force initiating cell-cell recognition," Glycoconj. J. 21, 111–123 (2004).

    [7] S. V. Glavey, D. Huynh, M. R. Reagan, S. Manier, M. Moschetta, Y. Kawano, A. M. Roccaro, I. M. Ghobrial, L. Joshi, M. E. O'Dwyer, "The cancer glycome: Carbohydrates as mediators of metastasis," Blood Rev. 29, 269–279 (2015).

    [8] V. N. Tra, D. H. Dube, "Glycans in pathogenic bacteria–potential for targeted covalent therapeutics and imaging agents," Chem. Commun. 50, 4659–4673 (2014).

    [9] M. Dalziel, M. Crispin, C. N. Scanlan, N. Zitzmann, R. A. Dwek, "Emerging principles for the therapeutic exploitation of glycosylation," Science 343, 1235681 (2014).

    [10] K. Ohtsubo, J. D. Marth, "Glycosylation in cellular mechanisms of health and disease," Cell 126, 855– 867 (2006).

    [11] F. M. Go i, "The basic structure and dynamics of cell membranes: An update of the Singer–Nicolson model," BBA. Biomembranes 1838, 1467–1476 (2014).

    [12] G. L. Nicolson, "The Fluid—Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years," BBA. Biomembranes 1838, 1451–1466 (2014).

    [13] B. Truong-Quang, P. Lenne, "Membrane microdomains: From seeing to understanding," Front. Plant Sci. 5, 18 (2014).

    [14] S. Li, X. Zhang, W. Wang, "Selective aggregation of membrane proteins by membrane-mediated interactions," Sci. China Chem. 57, 1683–1689 (2014).

    [15] Y. Shan, H. Wang, "The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy," Chem. Soc. Rev. 44, 3617–3638 (2015).

    [16] W. Zhao, Y. Tian, M. Cai, F. Wang, J. Wu, J. Gao, S. Liu, J. Jiang, S. Jiang, H. Wang, "Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches," PLoS ONE 9, e91595 (2014).

    [17] Y. Wang, J. Gao, X. Guo, T. Tong, X. Shi, L. Li, M. Qi, Y. Wang, M. Cai, J. Jiang, C. Xu, H. Ji, H. Wang, "Regulation of EGFR nanocluster formation by ionic protein-lipid interaction," Cell Res. 24, 959–976 (2014).

    [18] J. Wu, J. Gao, M. Qi, J. Wang, M. Cai, S. Liu, X. Hao, J. Jiang, H. Wang, "High-efficiency localization of Nat-Kt ATPases on the cytoplasmic side by direct stochastic optical reconstruction microscopy," Nanoscale 5, 11582–11586 (2013).

    [19] S. K. Saka, A. Honigmann, C. Eggeling, S. W. Hell, T. Lang, S. O. Rizzoli, "Multi-protein assemblies underlie the mesoscale organization of the plasma membrane," Nat. Commun. 5, 4509–4522 (2014).

    [20] Y. Mechref, M. V. Novotny, "Glycomic analysis by capillary electrophoresis–mass spectrometry," Mass Spectrom. Rev. 28, 207–222 (2009).

    [21] J. L. Behan, K. D. Smith, "The analysis of glycosylation: A continued need for high pH anion exchange chromatography," Biomed. Chromatogr. 25, 39–46 (2011).

    [22] L. Royle, M. P. Campbell, C. M. Radcliffe, D. M. White, D. J. Harvey, J. L. Abrahams, Y.-G. Kim, G. W. Henry, N. A. Shadick, M. E. Weinblatt, "HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software," Anal. Biochem. 376, 1–12 (2008).

    [23] J. Zaia, "Mass spectrometry and glycomics," Omics 14, 401–418 (2010).

    [24] S.-C. Tao, Y. Li, J. Zhou, J. Qian, R. L. Schnaar, Y. Zhang, I. J. Goldstein, H. Zhu, J. P. Schneck, "Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers," Glycobiology 18, 761–769 (2008).

    [25] Y. Liu, A. S. Palma, T. Feizi, "Carbohydrate microarrays: Key developments in glycobiology," Biol. Chem. 390, 647–656 (2009).

    [26] E. W. Adams, D. M. Ratner, H. R. Bokesch, J. B. McMahon, B. R. O'Keefe, P. H. Seeberger, "Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology: Glycan-dependent gp120/ protein interactions," Chem.Biol. 11, 875–881 (2004).

    [27] X.-D. Xu, H. Cheng, W.-H. Chen, S.-X. Cheng, R.-X. Zhuo, X.-Z. Zhang, "In situ recognition of cellsurface glycans and targeted imaging of cancer cells," Sci. Rep. 3 2679–2686 (2013).

    [28] A. Neves, H. St€ockmann, Y. Wainman, J. Kuo, S. Fawcett, F. J. Leeper, K. M. Brindle, "Imaging cell surface glycosylation in vivo using `double click' chemistry," Bioconjugate Chem. 24, 934–941 (2013).

    [29] D. R. Whelan, T. D. Bell, "Super-Resolution singlemolecule localization microscopy: Tricks of the trade," J. Phys. Chem. Lett. 6, 374–382 (2015).

    [30] E. F. Fornasiero, F. Opazo, "Super-resolution imaging for cell biologists," BioEssays: News Rev. Mol. Cell. Develop. Biol. 37, 436–451 (2015).

    [31] S. W. Hell, J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: Stimulatedemission- depletion fluorescence microscopy," Opt. Lett. 19, 780–782 (1994).

    [32] K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, S. W. Hell, "STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis," Nature 440, 935–939 (2006).

    [33] S. W. Hell, "Far-field optical nanoscopy," Science 316, 1153–1158 (2007).

    [34] M. G. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    [35] M. J. Rust, M. Bates, X. Zhuang, "Sub-diffractionlimit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Methods 3, 793–796 (2006).

    [36] M. Heilemann, S. van de Linde, M. Schüttpelz, R. Kasper, B. Seefeldt, A. Mukherjee, P. Tinnefeld, M. Sauer, "Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes," Angew. Chem., Int. Ed. 47, 6172–6176 (2008).

    [37] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642–1645 (2006).

    [38] S. T. Hess, T. P. Girirajan, M. D. Mason, "Ultrahigh resolution imaging by fluorescence photoactivation localization microscopy," Biophys. J. 91, 4258–4272 (2006).

    [39] S. Rocha, H. De Keersmaecker, H. Uji-i, J. Hofkens, H. Mizuno, Photoswitchable fluorescent proteins for superresolution fluorescence microscopy circumventing the diffraction limit of light, Methods Mol. Bio. 1076, 793–812 (2014).

    [40] S. van de Linde, S. Aufmkolk, C. Franke, T. Holm, T. Klein, A. L€oschberger, S. Proppert, S. Wolter, M. Sauer, "Investigating cellular structures at the nanoscale with organic fluorophores," Chem. Biol. 20, 8–18 (2013).

    [41] S. van de Linde, A. L€oschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, M. Sauer, "Direct stochastic optical reconstruction microscopy with standard fluorescent probes," Nat. Protoc. 6, 991–1009 (2011).

    [42] M. Bates, B. Huang, G. T. Dempsey, X. Zhuang, "Multicolor super-resolution imaging with photoswitchable fluorescent probes," Science 317, 1749– 1753 (2007).

    [43] J. Wang, J. Li, Y. Yang, M. Yang, P. R. Chen, Small-molecule labeling probes, Optical Nanoscopy and Novel Microscopy Techniques, X. Peng, Ed., Chap. 4, p. 85, CRC Press [Imprint]; Taylor & Francis Group, Florida, United States (2014).

    [44] C. Uttamapinant, J. D. Howe, K. Lang, V. Beranek, L. Davis, M. Mahesh, N. P. Barry, J. W. Chin, "Genetic code expansion enables live-cell and superresolution imaging of site-specifically labeled cellular proteins," J. Am. Chem. Soc. 137, 4602–4605 (2015).

    [45] J. Patrick, "Click chemistry facilitates direct labelling and super-resolution imaging of nucleic acids and proteins," RSC Adv. 4, 30462–30466 (2014).

    [46] C. Chu, Y. Shan, H. Wang, "Application of quantum dots in biological detection," Chin. J. Appl. Chem. 31, 377–388 (2014).

    [47] K. Finan, B. Flottmann, M. Heilemann, Photoswitchable fluorophores for single-molecule localization microscopy, Nanoimaging: Methods and Protocols 9, 131–151 (2013).

    [48] M. Orm€o, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, S. J. Remington, "Crystal structure of the Aequorea victoria green fluorescent protein," Science 273, 1392–1395 (1996).

    [49] E. L. Snapp, "Fluorescent proteins: A cell biologist's user guide," Trends Cell Biol. 19, 649–655 (2009).

    [50] S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, J. Lippincott-Schwartz, "High-density mapping of single-molecule trajectories with photoactivated localization microscopy," Nat. Methods 5, 155–157 (2008).

    [51] H. Shroff, C. G. Galbraith, J. A. Galbraith, E. Betzig, "Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics," Nat. Methods 5, 417–423 (2008).

    [52] M. Heilemann, E. Margeat, R. Kasper, M. Sauer, P. Tinnefeld, "Carbocyanine dyes as efficient reversible single-molecule optical switch," J. Am. Chem. Soc. 127, 3801–3806 (2005).

    [53] M. Bates, T. R. Blosser, X. Zhuang, "Short-range spectroscopic ruler based on a single-molecule optical switch," Phys. Rev. Lett. 94, 108101 (2005).

    [54] M. Sauer, A practical guide to dSTORM: Superresolution imaging with standard fluorescent probes, Far-Field Optical Nanoscopy, P. Tinnefeld, C. Eggeling, S. W. Hell, Eds., Chap. 1, pp. 65–84, Springer, Berlin, Heidelberg (2015).

    [55] G. Lukinavi ius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa Jr, Z.-G. Luo, "A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins," Nat. Chem. 5, 132–139 (2013).

    [56] R. Wieneke, A. Raulf, A. Kollmannsperger, M. Heilemann, R. Tampe, "SLAP: Small labeling pair for single-molecule super-resolution imaging," Angew. Chem., Int. Ed. 54, 10216–10219 (2015).

    [57] J. Ries, C. Kaplan, E. Platonova, H. Eghlidi, H. Ewers, "A simple, versatile method for GFP-based super-resolution microscopy via nanobodies," Nat. Methods 9, 582–584 (2012).

    [58] M. Mikhaylova, B. M. Cloin, K. Finan, R. van den Berg, J. Teeuw, M. M. Kijanka, M. Sokolowski, E. A. Katrukha, M. Maidorn, F. Opazo, "Resolving bundled microtubules using antitubulin nanobodies," Nat. Commun. 6, 7933–7939 (2015).

    [59] F. Opazo, M. Levy,M. Byrom, C. Sch fer, C. Geisler, T. W. Groemer, A. D. Ellington, S. O. Rizzoli, "Aptamers as potential tools for super-resolution microscopy," Nat. Methods 9, 938–939 (2012).

    [60] P. J. Zessin, K. Finan, M. Heilemann, "Super-resolution fluorescence imaging of chromosomal DNA," J. Struct. Biol. 177, 344–348 (2012).

    [61] T. Zheng, D. Peelen, L. M. Smith, "Lectin arrays for profiling cell surface carbohydrate expression," J. Am. Chem. Soc. 127, 9982–9983 (2005).

    [62] J. Lescar, J.-F. Sanchez, A. Audfray, J.-L. Coll, C. Breton, E. P. Mitchell, A. Imberty, "Structural basis for recognition of breast and colon cancer epitopes Tn antigen and Forssman disaccharide by Helix pomatia lectin," Glycobiology 17, 1077–1083 (2007).

    [63] A. Cibiel, D. M. Dupont, F. Duconge, "Methods to identify aptamers against cell surface biomarkers," Pharmaceuticals. 4, 1216–1235 (2011).

    [64] J. Kawakami, Y. Kawase, N. Sugimoto, "In vitro selection of aptamers that recognize a monosaccharide," Anal. Chim. Acta 365, 95–100 (1998).

    [65] Q. Yang, I. J. Goldstein, H.-Y. Mei, D. R. Engelke, "DNA ligands that bind tightly and selectively to cellobiose," Proc. Natl. Acad. Sci. USA 95, 5462– 5467 (1998).

    [66] M. M. Masud, M. Kuwahara, H. Ozaki, H. Sawai, "Sialyllactose-binding modified DNA aptamer bearing additional functionality by SELEX," Bioorg. Med. Chem. 12, 1111–1120 (2004).

    [67] S. Jeong, T.-Y. Eom, S.-J. Kim, S.-W. Lee, J. Yu, "In vitro selection of the RNA aptamer against the Sialyl Lewis X and its inhibition of the cell adhesion," Biochem. Biophys. Res. Commun. 281, 237–243 (2001).

    [68] B. Boese, K. Corbino, R. Breaker, "In vitro selection and characterization of cellulose-binding RNA aptamers using isothermal amplification," Nucleos. Nucleot. Nucl. Acids 27, 949–966 (2008).

    [69] S. Y. Low, J. E. Hill, J. Peccia, "DNA aptamers bind specifically and selectively to (1→3)-β- d-glucans," Biochem. Biophys. Res. Commun. 378, 701–705 (2009).

    [70] G. A. Rabinovich, M. A. Toscano, S. S. Jackson, G. R. Vasta, "Functions of cell surface galectin-glycoprotein lattices," Curr. Opin. Struct. Biol. 17, 513– 520 (2007).

    [71] W. Sun, L. Du, M. Li, "Aptamer-based carbohydrate recognition," Curr. Pharm. Des. 16, 2269– 2278 (2010).

    [72] J. Li, H. Wu, J. Hong, X. Xu, H. Yang, B. Wu, Y. Wang, J. Zhu, R. Lai, X. Jiang, "Odorranalectin is a small peptide lectin with potential for drug delivery and targeting," PLoS One 3, e2381 (2008).

    [73] Y. Konami, K. YamRmoto, T. Osawa, T. Irimura, "The primary structure of the Cytisus scoparius seed lectin and a carbohydrate-binding peptide," J. Biochem. 112, 366–375 (1992).

    [74] K. Yamamoto, Y. Konami, T. Osawa, T. Irimura, "Carbohydrate-binding peptides from several anti-H (O) lectins," J. Biochem. 111, 436–439 (1992).

    [75] K.Yamamoto,Y.Konami, T. Osawa, "Determination of the carbohydrate-binding site of Bauhinia purpurea lectin by affinity chromatography," J. Chromatogr. A 597, 221–230 (1992).

    [76] L. Heerze, P. Chong, G. Armstrong, "Investigation of the lectin-like binding domains in pertussis toxin using synthetic peptide sequences. Identification of a sialic acid binding site in the S2 subunit of the toxin," J. Biol. Chem. 267, 25810–25815 (1992).

    [77] S. H. Tam, M. T. Nakada, M. Kruszynski, W. E. Fieles, A. H. Taylor, M. Mervic, G. A. Heavner, "Structure–function studies on synthetic peptides derived from the 109–118 lectin domain of selectins," Biochem. Biophys. Res. Commun. 227, 712–717 (1996).

    [78] C. E. Von Seggern, R. J. Cotter, "Study of peptide– sugar non-covalent complexes by infrared atmospheric pressure matrix-assisted laser desorption/ ionization," J. Mass Spectrom. 39, 736–742 (2004).

    [79] E. N. Peletskaya, V. V. Glinsky, G. V. Glinsky, S. L. Deutscher, T. P. Quinn, "Characterization of peptides that bind the tumor-associated Thomsen– Friedenreich antigen selected from bacteriophage display libraries," J. Mol. Biol. 270, 374–384 (1997).

    [80] S. Hyun, J. Kim, M. Kwon, J. Yu, "Selection and syntheses of tentacle type peptides as `artificial' lectins against various cell-surface carbohydrates," Bioorg. Med. Chem. 15, 511–517 (2007).

    [81] S. Hyun, E. H. Lee, J. Park, J. Yu, "Tentacle type peptides as artificial lectins against sulfated Lewis X and A," Bioorg. Med. Chem. Lett. 18, 4011–4014 (2008).

    [82] K. W. Boltz, M. J. Gonzalez-Moa, P. Stafford, S. A. Johnston, S. A. Svarovsky, "Peptide microarrays for carbohydrate recognition," Analyst 134, 650–652 (2009).

    [83] M. Sawa, T.-L. Hsu, T. Itoh, M. Sugiyama, S. R. Hanson, P. K. Vogt, C.-H. Wong, "Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo," Proc. Natl. Acad. Sci. USA 103, 12371– 12376 (2006).

    [84] E. Saxon, C. R. Bertozzi, "Cell surface engineering by a modified staudinger reaction," Science 287, 2007–2010 (2000).

    [85] P. V. Chang, J. A. Prescher, M. J. Hangauer, C. R. Bertozzi, "Imaging cell surface glycans with bioorthogonal chemical reporters," J. Am. Chem. Soc. 129, 8400–8401 (2007).

    [86] S. J. Luchansky, S. Goon, C. R. Bertozzi, "Expanding the diversity of unnatural cell-surface sialic acids," ChemBioChem 5, 371–374 (2004).

    [87] T.-L. Hsu, S. R. Hanson, K. Kishikawa, S.-K. Wang, M. Sawa, C.-H. Wong, "Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells," Proc. Natl. Acad. Sci. USA 104, 2614–2619 (2007).

    [88] D. H. Dube, J. A. Prescher, C. N. Quang, C. R. Bertozzi, "Probing mucin-type O-linked glycosylation in living animals," Proc. Natl. Acad. Sci. USA 103, 4819–4824 (2006).

    [89] M. Boyce, I. S. Carrico, A. S. Ganguli, S.-H. Yu, M. J. Hangauer, S. C. Hubbard, J. J. Kohler, C. R. Bertozzi, "Metabolic cross-talk allows labeling of Olinked β-N-acetylglucosamine-modified proteins via the N-acetylgalactosamine salvage pathway," Proc. Natl. Acad. Sci. USA 108, 3141–3146 (2011).

    [90] D. Rabuka, S. C. Hubbard, S. T. Laughlin, S. P. Argade, C. R. Bertozzi, "A chemical reporter strategy to probe glycoprotein fucosylation," J. Am. Chem. Soc. 128, 12078–12079 (2006).

    [91] S. T. Laughlin, J. M. Baskin, S. L. Amacher, C. R. Bertozzi, "In vivo imaging of membrane-associated glycans in developing zebrafish," Science 320, 664– 667 (2008).

    [92] P. V. Robinson, G. de Almeida-Escobedo, A. E. de Groot, J. L. McKechnie, C. R. Bertozzi, "Live-cell labeling of specific protein glycoforms by proximityenhanced bioorthogonal ligation," J. Am. Chem. Soc. 137, 10452–10455 (2015).

    [93] S. Letschert, A. G€ohler, C. Franke, N. Bertleff Zieschang, E. Memmel, S. Doose, J. Seibel, M. Sauer, "Super-resolution imaging of plasma membrane glycans," Angew. Chem., Int. Ed. 53, 10921–10924 (2014).

    [94] H. Jiang, B. P. English, R. B. Hazan, P. Wu, B. Ovryn, "Tracking surface glycans on live cancer cells with single-molecule sensitivity," Angew. Chem., Int. Ed. 54, 1765–1769 (2014).

    [95] H. C. Hang, C. Yu, D. L. Kato, C. R. Bertozzi, "A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation," Proc. Natl. Acad. Sci. USA 100, 14846–14851 (2003).

    [96] S. Stairs, A. A. Neves, H. St€ockmann, Y. A. Wainman, H. Ireland-Zecchini, K. M. Brindle, F. J. Leeper, "Metabolic glycan imaging by isonitrile– tetrazine click chemistry," ChemBioChem 14, 1063– 1067 (2013).

    [97] J. Chen, J. Gao, J. Wu, M. Zhang, M. Cai, H. Xu, J. Jiang, Z. Tian, H. Wang, "Revealing the carbohydrate pattern on a cell surface by super-resolution imaging," Nanoscale 7, 3373–3380 (2015).

    Junling Chen, Ti Tong, Hongda Wang. Super-resolution imaging in glycoscience: New developments and challenges[J]. Journal of Innovative Optical Health Sciences, 2016, 9(3): 1630007
    Download Citation