• Laser & Optoelectronics Progress
  • Vol. 56, Issue 23, 231101 (2019)
[in Chinese], Xinyi Jiang, Yewen Pu, Lanlan Zhang, Yue Zhang, and Wanrong Gao*
Author Affiliations
  • School of Electronic and Optical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
  • show less
    DOI: 10.3788/LOP56.231101 Cite this Article Set citation alerts
    [in Chinese], Xinyi Jiang, Yewen Pu, Lanlan Zhang, Yue Zhang, Wanrong Gao. Differential Standard Deviation Algorithm Based on Logarithmic Intensity of Multi-Frame B-Scan[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231101 Copy Citation Text show less
    References

    [1] Huang D, Swanson E, Lin C et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Yao X W, Gan Y, Chang E et al. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT[J]. Lasers in Surgery and Medicine, 49, 258-269(2017).

    [3] Fossarello M, Florence C, Napoli P E et al. Evaluation of foveal avascular zone alterations in diabetic retinopathy with optical coherence tomography angiography[J]. Investigative Ophthalmology & Visual Science, 58, 951(2017).

    [4] Gonçalves N P, Vægter C B, Andersen H et al. Schwann cell interactions with axons and microvessels in diabetic neuropathy[J]. Nature Reviews Neurology, 13, 135-147(2017).

    [5] Alomar F, Singh J, Jang H S et al. Smooth muscle-generated methylglyoxal impairs endothelial cell-mediated vasodilatation of cerebral microvessels in type 1 diabetic rats[J]. British Journal of Pharmacology, 173, 3307-3326(2016).

    [6] Latrive A. Teixeira L R C, Gomes A S L, et al. Characterization of skin port-wine stain and hemangioma vascular lesions using Doppler OCT[J]. Skin Research and Technology, 22, 223-229(2016).

    [7] Swanson E A, Huang D, Hee M R et al. High-speed optical coherence domain reflectometry[J]. Optics Letters, 17, 151-153(1992).

    [8] Hee M R, Puliafito C A, Wong C et al. Quantitative assessment of macular edema with optical coherence tomography[J]. Archives of Ophthalmology, 113, 1019-1029(1995).

    [9] Izatt J A, Swanson E A, Fujimoto J G et al. Optical coherence microscopy in scattering media[J]. Optics Letters, 19, 590-592(1994).

    [10] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995).

    [11] Choma M A, Sarunic M V, Yang C et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 11, 2183-2189(2003).

    [12] Leitgeb R, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs. time domain optical coherence tomography[J]. Optics Express, 11, 889-894(2003).

    [13] Zawadzki R J, Bower B A, Zhao M T et al. Exposure time dependence of image quality in high-speed retinal in vivo Fourier-domain OCT[J]. Proceedings of SPIE, 5688, 45-52(2005).

    [14] Yasuno Y, Madjarova V D, Makita S et al. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments[J]. Optics Express, 13, 10652-10664(2005).

    [15] Huber R, Taira K, Wojtkowski M et al. High-speed-frequency swept light source for Fourier domain OCT at 20-kHz A-scan rate[J]. Proceedings of SPIE, 5690, 96-100(2005).

    [16] Wang R K, Jacques S L, Ma Z H et al. Three dimensional optical angiography[J]. Optics Express, 15, 4083-4097(2007).

    [17] Chen C L, Shi W S, Gao W R. Imaginary part-based correlation mapping optical coherence tomography for imaging of blood vessels in vivo[J]. Journal of Biomedical Optics, 20, 116009(2015).

    [18] Barton J K, Stromski S. Flow measurement without phase information in optical coherence tomography images[J]. Optics Express, 13, 5234-5239(2005).

    [19] Yao X L, Ji K H, Liu G P et al. Blood flow imaging by optical coherence tomography based on speckle variance and Doppler algorithm[J]. Laser & Optoelectronics Progress, 54, 031702(2017).

    [20] Xu J, Han S, Balaratnasingam C et al. Retinal angiography with real-time speckle variance optical coherence tomography[J]. British Journal of Ophthalmology, 99, 1315-1319(2015).

    [21] Gao S S, Liu G J, Huang D et al. Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system[J]. Optics Letters, 40, 2305-2308(2015).

    [22] Chen C L. Study of Fourier domain optical coherence tomography based 3D blood flow imaging of human skin[D]. Nanjing: Nanjing University of Science and Technology(2016).

    [23] Shi W S, Chen C L, Pasarikovski C R et al. Differential phase standard-deviation-based optical coherence tomographic angiography for human retinal imaging in vivo[J]. Applied Optics, 58, 3401-3409(2019).

    [24] Zhang L L, Gao W R, Shi W S. Analysis of imaging performance of optical coherence tomography based on differential standard deviation of log-scale intensity[J]. Chinese Journal of Lasers, 45, 0407002(2018).

    [25] Ding Z H, Zhao C, Bao W et al. Advances in Doppler optical coherence tomography[J]. Laser & Optoelectronics Progress, 50, 080005(2013).

    [in Chinese], Xinyi Jiang, Yewen Pu, Lanlan Zhang, Yue Zhang, Wanrong Gao. Differential Standard Deviation Algorithm Based on Logarithmic Intensity of Multi-Frame B-Scan[J]. Laser & Optoelectronics Progress, 2019, 56(23): 231101
    Download Citation