• Matter and Radiation at Extremes
  • Vol. 9, Issue 2, 027201 (2024)
J. Cikhardt1,a), M. Gyrdymov2, S. Zähter3,4, P. Tavana2..., M. M. Günther3, N. Bukharskii5,6, N. Borisenko6, J. Jacoby2, X. F. Shen7, A. Pukhov7, N. E. Andreev8,9 and O. N. Rosmej2,3|Show fewer author(s)
Author Affiliations
  • 1Faculty of Electrical Engineering, Czech Technical University in Prague, 16627 Prague 6, Czech Republic
  • 2Goethe University, Frankfurt, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
  • 3GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
  • 4Focused Energy GmbH, Im Tiefen See 45, 64293 Darmstadt, Germany
  • 5National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow, Russian Federation
  • 6Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow, Russian Federation
  • 7Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
  • 8Joint Institute for High Temperatures, RAS, Izhorskaya st. 13, Bldg. 2, 125412 Moscow, Russian Federation
  • 9Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, 141700 Dolgoprudny, Russia
  • show less
    DOI: 10.1063/5.0181119 Cite this Article
    J. Cikhardt, M. Gyrdymov, S. Zähter, P. Tavana, M. M. Günther, N. Bukharskii, N. Borisenko, J. Jacoby, X. F. Shen, A. Pukhov, N. E. Andreev, O. N. Rosmej. Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density[J]. Matter and Radiation at Extremes, 2024, 9(2): 027201 Copy Citation Text show less
    References

    [1] S.Corde, G.Lambert, K.Ta Phuocet?al.. Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys., 85, 1(2013).

    [2] F.Albert, N.Lemos, J. L.Shawet?al.. Betatron x-ray radiation in the self-modulated laser wakefield acceleration regime: Prospects for a novel probe at large scale laser facilities. Nucl. Fusion, 59, 032003(2019).

    [3] J. A.Hawreliak, A. L.Kritcher, D. C.Swiftet?al.. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography. Rev. Sci. Instrum., 89, 053505(2018).

    [4] M.Koenig, S.Le Pape, A.Ravasioet?al.. Hard x-ray radiography for density measurement in shock compressed matter. Phys. Plasmas, 15, 060701(2008).

    [5] D. J.Chapman, K.Poder, J. C.Woodet?al.. Ultrafast imaging of laser driven shock waves using betatron x-rays from a laser wakefield accelerator. Sci. Rep., 8, 11010(2018).

    [6] N.Jourdain, B.Mahieu, K.Ta Phuocet?al.. Probing warm dense matter using femtosecond X-ray absorption spectroscopy with a laser-produced betatron source. Nat. Commun., 9, 3276(2018).

    [7] J. M.Cole, N. C.Lopes, J. C.Woodet?al.. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone. Sci. Rep., 5, 13244(2015).

    [8] A.D?pp, J.G?tzfried, L.Hehnet?al.. Quick x-ray microtomography using a laser-driven betatron source. Optica, 5, 199-203(2018).

    [9] K. T.Phuoc, A.Rousse, R.Shahet?al.. Production of a keV -ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett., 93, 135005(2004).

    [10] F.Dollar, S.Kneip, C.McGuffeyet?al.. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl. Phys. Lett., 99, 093701(2011).

    [11] V.Horny, M.Kozlova, J.Nejdlet?al.. Temporal profile of betatron radiation from laser-driven electron accelerators. Phys. Plasmas, 24, 063107(2017).

    [12] J.Meyer-ter-Vehn, A.Pukhov, Z.-M.Sheng. Particle acceleration in relativistic laser channels. Phys. Plasmas, 6, 2847-2854(1999).

    [13] A.Pukhov. Strong field interaction of laser radiation. Rep. Prog. Phys., 66, 47-101(2003).

    [14] C.Bellei, S.Kneip, S. R.Nagelet?al.. Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Phys. Rev. Lett., 100, 105006(2008).

    [15] S.Corde, S.Fourmaux, K. T.Phuocet?al.. Single shot phase contrast imaging using laser-produced Betatron x-ray beams. Opt. Lett., 36, 2426-2428(2011).

    [16] A.D?pp, J.Ju, K.Svenssonet?al.. Enhancement of x-rays generated by a guided laser wakefield accelerator inside capillary tubes. Appl. Phys. Lett., 100, 191106(2012).

    [17] S.Cipiccia, B.Ersfeld, M. R.Islamet?al.. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys., 7, 867(2011).

    [18] I.Andriyash, J.Gautier, M.Kozlovaet?al.. Hard x rays from laser-wakefield accelerators in density tailored plasmas. Phys. Rev. X, 10, 011061(2020).

    [19] J. P.Couperus, A.K?hler, R.Pauschet?al.. Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator. Nat. Commun., 8, 487(2017).

    [20] C.Aniculaesei, T.Ha, S.Yoffeet?al.. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator. Matter Radiat. Extremes, 9, 014001(2024).

    [21] A.D?pp, M. F.Gilljohann, J.G?tzfriedet?al.. Physics of high-charge electron beams in laser-plasma wakefields. Phys. Rev. X, 10, 041015(2020).

    [22] S.Corde, A.D?pp, J.Ferriet?al.. High-brilliance betatron γ-ray source powered by laser-accelerated electrons. Phys. Rev. Lett., 120, 254802(2018).

    [23] K.Jensen, R.Rakowski, P.Zhanget?al.. Transverse oscillating bubble enhanced laser-driven betatron X-ray radiation generation. Sci. Rep., 12, 10855(2022).

    [24] N. E.Andreev, L. M.Gorbunov, V. I.Kirsanov et al. Resonant excitation of wake-fields by a laser pulse in a plasma. JETP Lett, 55, 571-576(1992).

    [25] N. E.Andreev, L. M.Gorbunov, V. I.Kirsanovet?al.. Stimulated processes and self-modulation of a short intense laser pulse in the laser wake-field accelerator. Phys. Plasmas, 2, 2573-2582(1995).

    [26] E.Esarey, W. P.Leemans, C. B.Schroeder. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys., 81, 1229(2009).

    [27] F.Albert, N.Lemos, J. L.Shawet?al.. Observation of betatron x-ray radiation in a self-modulated laser wakefield accelerator driven with picosecond laser pulses. Phys. Rev. Lett., 118, 134801(2017).

    [28] X.Davoine, J.Ferri, S. Y.Kalmykov, A.Lifschitz. Electron acceleration and generation of high-brilliance x-ray radiation in kilojoule, subpicosecond laser-plasma interactions. Phys. Rev. Accel. Beams, 19, 101301(2016).

    [29] A.Pukhov. Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys., 61, 425-433(1999).

    [30] S.Gessner, B.Williamson, G.Xiaet?al.. Betatron radiation diagnostics for AWAKE Run 2. Nucl. Instrum. Methods Phys. Res., Sect. A, 971, 164076(2020).

    [31] M. M.Gunther, A.Pukhov, O. N.Rosmej, X. F.Shen. Bright betatron x-rays generation from picosecond laser interactions with long-scale near critical density plasmas. Appl. Phys. Lett., 118, 134102(2021).

    [32] A.Pukhov, O. N.Rosmej, X. F.Shenet?al.. Bright betatron radiation from direct-laser-accelerated electrons at moderate relativistic laser intensity. Matter Radiat. Extremes, 6, 048401(2021).

    [33] R.Jung, K.L?wenbrück, J.Osterholzet?al.. Study of electron-beam propagation through preionized dense foam plasmas. Phys. Rev. Lett., 94, 195001(2005).

    [34] S. R.Nagel, A. G. R.Thomas, L.Willingaleet?al.. Characterization of high-intensity laser propagation in the relativistic transparent regime through measurements of energetic proton beams. Phys. Rev. Lett., 102, 125002(2009).

    [35] P. M.Nilson, A. G. R.Thomas, L.Willingaleet?al.. High-power, kilojoule laser interactions with near-critical density plasma. Phys. Plasmas, 18, 056706(2011).

    [36] A. V.Arefiev, G. J.Williams, L.Willingaleet?al.. The unexpected role of evolving longitudinal electric fields in generating energetic electrons in relativistically transparent plasmas. New J. Phys., 20, 093024(2018).

    [37] N. E.Andreev, O. N.Rosmej, S.Zaehteret?al.. Interaction of relativistically intense laser pulses with long-scale near critical plasmas for optimization of laser based sources of MeV electrons and gamma-rays. New J. Phys., 21, 043044(2019).

    [38] M. M.Günther, M.Gyrdymov, O. N.Rosmejet?al.. High-current laser-driven beams of relativistic electrons for high energy density research. Plasma Phys. Controlled Fusion, 62, 115024(2020).

    [39] M.Günther, O. N.Rosmej, P.Tavanaet?al.. Forward-looking insights in laser-generated ultra-intense γ-ray and neutron sources for nuclear application and science. Nat. Commun., 13, 170(2022).

    [40] N.Bukharskii, M.Gyrdymov, P.Tavanaet?al.. Ultra-high efficiency bremsstrahlung production in the interaction of direct laser-accelerated electrons with high-Z material. Front. Phys., 11, 1178967(2023).

    [41] N. E.Andreev, P. R.Levashov, L. P.Pugachev, O.Rosmej. Acceleration of electrons under the action of petawatt-class laser pulses onto foam targets. Nucl. Instrum. Methods Phys. Res., Sect. A, 829, 88-93(2016).

    [42] N. G.Borisenko, A. M.Khalenkov, V.Kmetiket?al.. Plastic aerogel targets and optical transparency of undercritical microheterogeneous plasma. Fusion Sci. Technol., 51, 655-664(2007).

    [43] B.Aurand, V.Bagnoud, A.Blazevicet?al.. Commissioning and early experiments of the PHELIX facility. Appl. Phys. B, 100, 137-150(2010).

    [44] P. A.Ross. A new method of spectroscopy for faint X-radiations. J. Opt. Soc. Am., 16, 433-437(1928).

    [45] P.Kirkpatrick. On the theory and use of Ross filters. Rev. Sci. Instrum., 10, 186-191(1939).

    [46]

    [47] J. C.Davis, E. M.Gullikson, B. L.Henke. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30 000 eV, Z = 1-92. At. Data Nucl. Data Tables, 54, 181-342(1993).

    [48] T.Weingartner.

    [49] (262019).

    [50] D. J.Ampleford, K. S.Bell, C. A.Coverdaleet?al.. The differential absorption hard x-ray spectrometer at the Z facility. IEEE Trans. Plasma Sci., 45, 2393-2398(2017).

    [51] D.Batani, G.Boutoux, F.Burgyet?al.. Validation of modelled imaging plates sensitivity to 1-100 keV x-rays and spatial resolution characterisation for diagnostics for the ‘PETawatt Aquitaine Laser. Rev. Sci. Instrum., 87, 043108(2016).

    [52] E.Celik Ayik, A.Hübner, B.Kindleret?al.. Surface and thickness measurement in the Targetlab of GSI. EPJ Web Conf., 229, 02002(2020).

    [53] J.Cikhardt, D.Klir, V.Munzaret?al.. Investigation of magnetic fields in Z-pinches via multi-MeV proton deflectometry. IEEE Trans. Plasma Sci., 46, 3891-3900(2018).

    [54] T.Bonnet, M.Comet, D.Denis-Petitet?al.. Response functions of imaging plates to photons, electrons and 4He particles. Rev. Sci. Instrum., 84, 103510(2013).

    [55] E.Acosta, J.Baro, J.Sempauet?al.. An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl. Instrum. Methods Phys. Res., Sect. B, 132, 377-390(1997).

    [56] B. R.Maddox, H. S.Park, B. A.Remingtonet?al.. Rev. Sci. Instrum., 82, 023111(2011).

    [57] W.Nakel. Phys. Rep., 243, 317-353(1994).

    [58] P.Catravas, E.Esarey, W. P.Leemans, B. A.Shadwick. Synchrotron radiation from electron beams in plasma-focusing channels. Phys. Rev. E, 65, 056505(2002).

    [59] S.Kneip, J. L.Martins, C.McGuffeyet?al.. Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys., 6, 980-983(2010).

    [60] U.Chaulagain, S.Fourmaux, E.Hallinet?al.. Laser-based synchrotron X-ray radiation experimental scaling. Opt. Express, 28, 3147-3158(2020).

    J. Cikhardt, M. Gyrdymov, S. Zähter, P. Tavana, M. M. Günther, N. Bukharskii, N. Borisenko, J. Jacoby, X. F. Shen, A. Pukhov, N. E. Andreev, O. N. Rosmej. Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density[J]. Matter and Radiation at Extremes, 2024, 9(2): 027201
    Download Citation