• Chinese Journal of Lasers
  • Vol. 48, Issue 12, 1212001 (2021)
Baoqing Sun* and Yupeng Wang
Author Affiliations
  • School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
  • show less
    DOI: 10.3788/CJL202148.1212001 Cite this Article Set citation alerts
    Baoqing Sun, Yupeng Wang. Temporal Ghost Imaging and Its Application[J]. Chinese Journal of Lasers, 2021, 48(12): 1212001 Copy Citation Text show less
    References

    [1] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 52, R3429-R3432(1995). http://europepmc.org/abstract/med/9912767

    [2] Abouraddy A F, Saleh B E, Sergienko A V et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 87, 123602(2001). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000087000012123602000001&idtype=cvips&gifs=Yes

    [3] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002). http://europepmc.org/abstract/MED/12225140

    [4] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and ClassicalCorrelation[J]. Physical Review Letters, 93, 093602(2004). http://www.ncbi.nlm.nih.gov/pubmed/15447100

    [5] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [6] Li H, Shi J H, Chen Z P et al. Detailed quality analysis of ideal high-order thermal ghost imaging[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 29, 2256-2262(2012). http://www.ncbi.nlm.nih.gov/pubmed/23201785

    [7] Ferri F, Magatti D, Lugiato L A et al. Differential ghost imaging[J]. Physical Review Letters, 104, 253603(2010).

    [8] Sun B, Edgar M P, Bowman R et al. Differential computational ghost imaging[C]. //Computational Optical Sensing and Imaging 2013, June 23-27, 2013, Arlington, Virginia, United States, CTu1C, 4(2013).

    [9] Sun B Q, Welsh S S, Edgar M P et al. Normalized ghost imaging[J]. Optics Express, 20, 16892-16901(2012).

    [10] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008). http://scitation.aip.org/content/aip/journal/apl/93/12/10.1063/1.2989126

    [11] Ma Y, Grant J, Saha S et al. Terahertz single pixel imaging based on a Nipkow disk[J]. Optics Letters, 37, 1484-1486(2012). http://www.ncbi.nlm.nih.gov/pubmed/22555712

    [12] Ota S, Horisaki R, Kawamura Y et al. Ghost cytometry[J]. Science, 360, 1246-1251(2018).

    [13] Xu Z H, Chen W, Penuelas J et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 26, 2427-2434(2018). http://www.ncbi.nlm.nih.gov/pubmed/29401782

    [14] Zhao W G, Chen H, Yuan Y et al. Ultrahigh-speed color imaging with single-pixel detectors at low light level[J]. Physical Review Applied, 12, 034049(2019). http://www.researchgate.net/publication/336050743_Ultrahigh-Speed_Color_Imaging_with_Single-Pixel_Detectors_at_Low_Light_Level

    [15] Sun B, Edgar M P, Bowman R et al. 3D computational imaging with single-pixel detectors[J]. Science, 340, 844-847(2013). http://europepmc.org/abstract/med/23687044

    [16] Zhu Y C, Shi J H, Li H et al. Three-dimensional ghost imaging based on periodic diffraction correlation imaging[J]. Chinese Optics Letters, 12, 071101(2014). http://www.opticsjournal.net/Articles/Abstract?aid=OJ114ff95c4991ae52

    [17] Gong W, Zhao C, Yu H et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific Reports, 6, 26133(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4868975/

    [18] Clemente P, Durán V, Torres-Company V et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 35, 2391-2393(2010). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-35-14-2391

    [19] Tanha M, Kheradmand R, Ahmadi-Kandjani S. Gray-scale and color optical encryption based on computational ghost imaging[J]. Applied Physics Letters, 101, 101108(2012). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6296581

    [20] Chen W, Chen X D. Marked ghost imaging[J]. Applied Physics Letters, 104, 251109(2014).

    [21] Zafari M, Kheradmand R, Ahmadi-Kandjani S. Optical encryption with selective computational ghost imaging[J]. Journal of Optics, 16, 105405(2014). http://adsabs.harvard.edu/abs/2014JOpt...16j5405Z

    [22] Salem R, Foster M A, Gaeta A L. Application of space-time duality to ultrahigh-speed optical signal processing[J]. Advances in Optics and Photonics, 5, 274-317(2013). http://www.opticsinfobase.org/abstract.cfm?URI=aop-5-3-274

    [23] Shirai T, Setälä T, Friberg A T. Temporal ghost imaging with classical non-stationary pulsed light[J]. Journal of the Optical Society of America B, 27, 2549-2555(2010).

    [24] Cho K, Noh J. Temporal ghost imaging of a time object, dispersion cancelation, and nonlocal time lens with bi-photon state[J]. Optics Communications, 285, 1275-1282(2012). http://www.sciencedirect.com/science/article/pii/S0030401811011242

    [25] Chen Z P, Li H, Li Y et al. Temporal ghost imaging with a chaotic laser[J]. Optical Engineering, 52, 076103(2013).

    [26] Ryczkowski P, Barbier M, Friberg A T et al. Ghost imaging in the time domain[J]. Nature Photonics, 10, 167-170(2016). http://www.opticsinfobase.org/abstract.cfm?uri=FiO-2015-FW6C.1

    [27] Ryczkowski P, Barbier M, Friberg A T et al. Magnified time-domain ghost imaging[J]. APL Photonics, 2, 046102(2017). http://arxiv.org/abs/1701.00163v1

    [28] O-Oka Y. Fukatsu S. Differential ghost imaging in time domain[J]. Applied Physics Letters, 111, 061106(2017). http://arxiv.org/abs/1705.04257

    [29] Meng W W, Shi D F, Yuan K E et al. Fourier-temporal ghost imaging[J]. Optics and Lasers in Engineering, 134, 106294(2020).

    [30] Dong S, Zhang W, Huang Y D et al. Long-distance temporal quantum ghost imaging over optical fibers[J]. Scientific Reports, 6, 26022(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4872159/

    [31] Tang J, Tang Y W, He K et al. Computational temporal ghost imaging using intensity-only detection over a single optical fiber[J]. IEEE Photonics Journal, 10, 1-9(2018). http://ieeexplore.ieee.org/document/8315425/

    [32] Yao X, Zhang W, Li H et al. Long-distance thermal temporal ghost imaging over optical fibers[J]. Optics Letters, 43, 759-762(2018). http://www.ncbi.nlm.nih.gov/pubmed/29443987

    [33] Wu H, Han B, Wang Z N et al. Temporal ghost imaging with random fiber lasers[J]. Optics Express, 28, 9957-9964(2020).

    [34] Wu H, Ryczkowski P, Friberg A T et al. Temporal ghost imaging using wavelength conversion and two-color detection[J]. Optica, 6, 902-906(2019).

    [35] Imani M F, Smith D R. Temporal microwave ghost imaging using a reconfigurable disordered cavity[J]. Applied Physics Letters, 116, 054102(2020).

    [36] Tian Y, Ge H, Zhang X J et al. Acoustic ghost imaging in the time domain[J]. Physical Review Applied, 13, 064044(2020).

    [37] Devaux F, Moreau P A, Denis S et al. Computational temporal ghost imaging[J]. Optica, 3, 698-701(2016).

    [38] Devaux F, Huy K P, Denis S et al. Temporal ghost imaging with pseudo-thermal speckle light[J]. Journal of Optics, 19, 024001(2017).

    [39] Denis S, Moreau P A, Devaux F et al. Temporal ghost imaging with twin photons[J]. Journal of Optics, 19, 034002(2017). http://d.wanfangdata.com.cn/periodical/b853197fb04c54fab85ae26d681bb997

    [40] Ryczkowski P, Barbier M, Friberg A T et al. Single shot time domain ghost imaging using wavelength multiplexing[C]. //Frontiers in Optics 2016, October 17-21, 2016, Rochester, New York, United States, FTh5C, 6(2016).

    [41] Tang J, Zou D D, Cheng M F et al. Single-shot temporal ghost imaging based on orthogonal frequency-division multiplexing[J]. IEEE Photonics Technology Letters, 30, 1555-1558(2018). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/02041629260.html

    [42] Xu Y K, Sun S H, Liu W T et al. Detecting fast signals beyond bandwidth of detectors based on computational temporal ghost imaging[J]. Optics Express, 26, 99-107(2018). http://europepmc.org/abstract/MED/29328297

    [43] Wu J, Wang F X, Chen W et al. Temporal ghost imaging for quantum device evaluation[J]. Optics Letters, 44, 2522-2525(2019). http://www.ncbi.nlm.nih.gov/pubmed/31090722

    [44] Bo Z W, Gong W L, Han S S. Focal-plane three-dimensional imaging method based on temporal ghost imaging: a proof of concept simulation[J]. Journal of the Optical Society of America A, 37, 417-421(2020). http://www.researchgate.net/publication/338493183_New_focal-plane_3D_imaging_method_based_on_temporalghost_imaging_A_proof_of_concept_simulation

    [45] Pan Z L, Zhang L H. Optical cryptography-based temporal ghost imaging with chaotic laser[J]. IEEE Photonics Technology Letters, 29, 1289-1292(2017). http://ieeexplore.ieee.org/document/7926355/

    [46] Jiang S, Wang Y R, Long T et al. Information security scheme based on computational temporal ghost imaging[J]. Scientific Reports, 7, 7676(2017). http://www.nature.com/articles/s41598-017-07816-2?proof=t

    [47] Kang Y, Zhang L H, Zhang D W. Study of an encryption system based on compressive temporal ghost imaging with a chaotic laser[J]. Optics Communications, 426, 535-540(2018). http://www.sciencedirect.com/science/article/pii/S0030401818303055

    [48] Huang X W, Bai Y F, Fu X Q. Stable and secure image transmission based on temporal ghost imaging[J]. Journal of Optics, 21, 055701(2019). http://iopscience.iop.org/article/10.1088/2040-8986/ab12b1

    [49] Zhang W, Huang Y D. Photonic energy-time entanglement in quantum communications[C]. //2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), December 11-13, 2019, Chongqing, China., 1-4(2019).

    [50] Kang Y, Zhang L H, Ye H L et al. One-to-many optical information encryption transmission method based on temporal ghost imaging and code division multiple access[J]. Photonics Research, 7, 1370-1380(2019). http://www.cnki.com.cn/Article/CJFDTotal-GZXJ201912003.htm

    [51] Sun H J, Ye H L, Zhang L H. Research on the information transmission based on linear block code and temporal ghost imaging algorithm[J]. Laser Physics, 29, 115203(2019). http://www.researchgate.net/publication/336567015_Research_on_the_information_transmission_based_on_linear_block_code_and_temporal_ghost_imaging_algorithm

    [52] Ye H L, Zhang L H, Chen J et al. Information transmission based on a Fourier transform and ascending coding temporal ghost imaging algorithm[J]. Laser Physics, 30, 125202(2020). http://iopscience.iop.org/article/10.1088/1555-6611/abc614

    [53] Wang Y P, Chen H L, Jiang W J et al. Optical encryption for visible light communication based on temporal ghost imaging with a micro-LED[J]. Optics and Lasers in Engineering, 134, 106290(2020). http://www.sciencedirect.com/science/article/pii/S0143816620306230

    [54] Mancinelli M, Trenti A, Piccione S et al. Mid-infrared coincidence measurements on twin photons at room temperature[J]. Nature Communications, 8, 15184(2017). http://pubmedcentralcanada.ca/pmcc/articles/PMC5440726/

    [55] Olivieri L, Gongora J S T, Pasquazi A et al. Time-resolved nonlinear ghost imaging[J]. ACS Photonics, 5, 3379-3388(2018).

    [56] Liu X Y, Tian P F, Wei Z X et al. Gbps long-distance real-time visible light communications using a high-bandwidth GaN-based micro-LED[J]. IEEE Photonics Journal, 9, 1-9(2017). http://ieeexplore.ieee.org/document/8115132/

    [57] Liu X Y, Lin R Z, Chen H L et al. High-bandwidth InGaN self-powered detector arrays toward MIMO visible light communication based on micro-LED arrays[J]. ACS Photonics, 6, 3186-3195(2019). http://pubs.acs.org/doi/10.1021/acsphotonics.9b00799

    [58] Jiang S. Investigation of signal to noise ratio and application in single-pixel computational imaging[D], 76(2019).

    [59] Zhao J L, Lu H Q, Song X S et al. Optical image encryption based on multistage fractional Fourier transforms and pixel scrambling technique[J]. Optics Communications, 249, 493-499(2005). http://www.ingentaconnect.com/content/el/00304018/2005/00000249/00000004/art00013

    [60] Spagnolo G S, Simonetti C, Cozzella L. Content fragile watermarking based on a computer generated hologram coding technique[J]. Journal of Optics A: Pure and Applied Optics, 7, 333-342(2005). http://adsabs.harvard.edu/abs/2005JOptA...7..333S

    [61] Meng X F, Cai L Z, Yang X L et al. Information security system by iterative multiple-phase retrieval and pixel random permutation[J]. Applied Optics, 45, 3289-3297(2006).

    [62] Bub G, Tecza M, Helmes M et al. Temporal pixel multiplexing for simultaneous high-speed, high-resolution imaging[J]. Nature Methods, 7, 209-211(2010). http://www.ncbi.nlm.nih.gov/pubmed/20154677

    [63] Wilburn B, Joshi N, Vaish V et al. High performance imaging using large camera arrays[J]. ACM Transactions on Graphics, 24, 765-776(2005).

    [64] Agrawal A, Gupta M, Veeraraghavan A et al. Optimal coded sampling for temporal super-resolution[C]. //2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 13-18, 2010, San Francisco, CA, USA., 599-606(2010).

    [65] Pournaghi R, Wu X L. Coded acquisition of high frame rate video[J]. IEEE Transactions on Image Processing, 23, 5670-5682(2014). http://ieeexplore.ieee.org/document/6949139/

    [66] Edgar M P, Gibson G M, Bowman R W et al. Simultaneous real-time visible and infrared video with single-pixel detectors[J]. Scientific Reports, 5, 10669(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4650679/

    [67] Reddy D, Veeraraghavan A, Chellappa R. P2C2: programmable pixel compressive camera for high speed imaging[C]. //CVPR 2011, June 20-25, 2011, Colorado Springs, CO, USA, 329-336(2011).

    [68] Koller R, Schmid L, Matsuda N et al. High spatio-temporal resolution video with compressed sensing[J]. Optics Express, 23, 15992-16007(2015). http://europepmc.org/abstract/MED/26193574

    [69] Jiang W J, Li X Y, Jiang S et al. Increase the frame rate of a camera via temporal ghost imaging[J]. Optics and Lasers in Engineering, 122, 164-169(2019). http://www.sciencedirect.com/science/article/pii/S014381661930065X

    Baoqing Sun, Yupeng Wang. Temporal Ghost Imaging and Its Application[J]. Chinese Journal of Lasers, 2021, 48(12): 1212001
    Download Citation